Persistent thermal input controls steering behavior in Caenorhabditis elegans

Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-01, Vol.17 (1), p.e1007916-e1007916
Hauptverfasser: Ikeda, Muneki, Matsumoto, Hirotaka, Izquierdo, Eduardo J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007916
container_issue 1
container_start_page e1007916
container_title PLoS computational biology
container_volume 17
creator Ikeda, Muneki
Matsumoto, Hirotaka
Izquierdo, Eduardo J
description Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C. elegans. Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C. elegans. Our results suggest that employments of temporally persistent sensory signals enable small animals to steer toward a destination in natural environment with variable, noisy, and subtle cues.
doi_str_mv 10.1371/JOURNAL.PCBI.1007916
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2490327501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650814592</galeid><doaj_id>oai_doaj_org_article_62f57864638d4a7aa1c6f73721afd3c0</doaj_id><sourcerecordid>A650814592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-a00a8bf81b3c62d0ebb7a77fa0dd7812b8fc7f56a79e8c334b2c3130b17daf853</originalsourceid><addsrcrecordid>eNqVkstuEzEUhkcIREvhDRCMxAYWCfZ4bM9skELEJSi0VaFr6_g2cTSxgz1TwdvjkLRqEBvkhY_s7_znWhTPMZpiwvHbLxfXV-ez5fRy_n4xxQjxFrMHxSmmlEw4oc3De_ZJ8SSlNULZbNnj4oSQGnPastPi66WJyaXB-KEcViZuoC-d345DqYIfYuhTmT9NdL4rpVnBjQsxA-UcjA9xBVK7waXS9KYDn54Wjyz0yTw73GfF9ccP3-efJ8uLT4v5bDlRjJBhAghBI22DJVGs0shIyYFzC0hr3uBKNlZxSxnw1jQqJysrRTBBEnMNtqHkrHi51932IYl1GKPP4URVt4hUnCKcicWe0AHWYhvdBuIvEcCJPw8hdgLi4FRvBKss5Q2rGWl0DRwAK2Y54RUGq4lCWevdIdooN0ar3KsI_ZHo8Y93K9GFG5FraRmus8Drg0AMP0aTBrFxSZm-B2_CuMubM8pY1ZKMvvoL_Xd10z3VQS7AeRtyXJWPNhuXB2esy-8zRlGDa9pW2eHNkcNuuObn0MGYklh8u_oP9vyYrfesiiGlaOxdVzASuzW9TV9slXTisKbZ7cX9jt453e4l-Q3xoeOM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490327501</pqid></control><display><type>article</type><title>Persistent thermal input controls steering behavior in Caenorhabditis elegans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ikeda, Muneki ; Matsumoto, Hirotaka ; Izquierdo, Eduardo J</creator><contributor>Ahamed, Tosif</contributor><creatorcontrib>Ikeda, Muneki ; Matsumoto, Hirotaka ; Izquierdo, Eduardo J ; Ahamed, Tosif</creatorcontrib><description>Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C. elegans. Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C. elegans. Our results suggest that employments of temporally persistent sensory signals enable small animals to steer toward a destination in natural environment with variable, noisy, and subtle cues.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/JOURNAL.PCBI.1007916</identifier><identifier>PMID: 33417596</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Animals ; Behavior ; Bias ; Biology and Life Sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - physiology ; Computational Biology ; Control ; Engineering and Technology ; Evolutionary algorithms ; Experiments ; Genetic algorithms ; Locomotion - physiology ; Methods ; Models, Neurological ; Navigation behavior ; Nematodes ; Neurons ; Organs ; Physical Sciences ; Research and Analysis Methods ; Sense organs ; Simulation ; Social Sciences ; Steering ; Taxis (Locomotion) ; Taxis Response - physiology ; Temperature ; Temperature gradients ; Thermotaxis ; Worms</subject><ispartof>PLoS computational biology, 2021-01, Vol.17 (1), p.e1007916-e1007916</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-a00a8bf81b3c62d0ebb7a77fa0dd7812b8fc7f56a79e8c334b2c3130b17daf853</citedby><cites>FETCH-LOGICAL-c633t-a00a8bf81b3c62d0ebb7a77fa0dd7812b8fc7f56a79e8c334b2c3130b17daf853</cites><orcidid>0000-0003-3063-5683 ; 0000-0002-2008-290X ; 0000-0001-9896-4817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33417596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ahamed, Tosif</contributor><creatorcontrib>Ikeda, Muneki</creatorcontrib><creatorcontrib>Matsumoto, Hirotaka</creatorcontrib><creatorcontrib>Izquierdo, Eduardo J</creatorcontrib><title>Persistent thermal input controls steering behavior in Caenorhabditis elegans</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C. elegans. Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C. elegans. Our results suggest that employments of temporally persistent sensory signals enable small animals to steer toward a destination in natural environment with variable, noisy, and subtle cues.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Behavior</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Computational Biology</subject><subject>Control</subject><subject>Engineering and Technology</subject><subject>Evolutionary algorithms</subject><subject>Experiments</subject><subject>Genetic algorithms</subject><subject>Locomotion - physiology</subject><subject>Methods</subject><subject>Models, Neurological</subject><subject>Navigation behavior</subject><subject>Nematodes</subject><subject>Neurons</subject><subject>Organs</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Sense organs</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Steering</subject><subject>Taxis (Locomotion)</subject><subject>Taxis Response - physiology</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermotaxis</subject><subject>Worms</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstuEzEUhkcIREvhDRCMxAYWCfZ4bM9skELEJSi0VaFr6_g2cTSxgz1TwdvjkLRqEBvkhY_s7_znWhTPMZpiwvHbLxfXV-ez5fRy_n4xxQjxFrMHxSmmlEw4oc3De_ZJ8SSlNULZbNnj4oSQGnPastPi66WJyaXB-KEcViZuoC-d345DqYIfYuhTmT9NdL4rpVnBjQsxA-UcjA9xBVK7waXS9KYDn54Wjyz0yTw73GfF9ccP3-efJ8uLT4v5bDlRjJBhAghBI22DJVGs0shIyYFzC0hr3uBKNlZxSxnw1jQqJysrRTBBEnMNtqHkrHi51932IYl1GKPP4URVt4hUnCKcicWe0AHWYhvdBuIvEcCJPw8hdgLi4FRvBKss5Q2rGWl0DRwAK2Y54RUGq4lCWevdIdooN0ar3KsI_ZHo8Y93K9GFG5FraRmus8Drg0AMP0aTBrFxSZm-B2_CuMubM8pY1ZKMvvoL_Xd10z3VQS7AeRtyXJWPNhuXB2esy-8zRlGDa9pW2eHNkcNuuObn0MGYklh8u_oP9vyYrfesiiGlaOxdVzASuzW9TV9slXTisKbZ7cX9jt453e4l-Q3xoeOM</recordid><startdate>20210108</startdate><enddate>20210108</enddate><creator>Ikeda, Muneki</creator><creator>Matsumoto, Hirotaka</creator><creator>Izquierdo, Eduardo J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3063-5683</orcidid><orcidid>https://orcid.org/0000-0002-2008-290X</orcidid><orcidid>https://orcid.org/0000-0001-9896-4817</orcidid></search><sort><creationdate>20210108</creationdate><title>Persistent thermal input controls steering behavior in Caenorhabditis elegans</title><author>Ikeda, Muneki ; Matsumoto, Hirotaka ; Izquierdo, Eduardo J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-a00a8bf81b3c62d0ebb7a77fa0dd7812b8fc7f56a79e8c334b2c3130b17daf853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Behavior</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Computational Biology</topic><topic>Control</topic><topic>Engineering and Technology</topic><topic>Evolutionary algorithms</topic><topic>Experiments</topic><topic>Genetic algorithms</topic><topic>Locomotion - physiology</topic><topic>Methods</topic><topic>Models, Neurological</topic><topic>Navigation behavior</topic><topic>Nematodes</topic><topic>Neurons</topic><topic>Organs</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Sense organs</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Steering</topic><topic>Taxis (Locomotion)</topic><topic>Taxis Response - physiology</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermotaxis</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Muneki</creatorcontrib><creatorcontrib>Matsumoto, Hirotaka</creatorcontrib><creatorcontrib>Izquierdo, Eduardo J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Muneki</au><au>Matsumoto, Hirotaka</au><au>Izquierdo, Eduardo J</au><au>Ahamed, Tosif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent thermal input controls steering behavior in Caenorhabditis elegans</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-01-08</date><risdate>2021</risdate><volume>17</volume><issue>1</issue><spage>e1007916</spage><epage>e1007916</epage><pages>e1007916-e1007916</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C. elegans. Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C. elegans. Our results suggest that employments of temporally persistent sensory signals enable small animals to steer toward a destination in natural environment with variable, noisy, and subtle cues.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33417596</pmid><doi>10.1371/JOURNAL.PCBI.1007916</doi><orcidid>https://orcid.org/0000-0003-3063-5683</orcidid><orcidid>https://orcid.org/0000-0002-2008-290X</orcidid><orcidid>https://orcid.org/0000-0001-9896-4817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-01, Vol.17 (1), p.e1007916-e1007916
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2490327501
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Analysis
Animals
Behavior
Bias
Biology and Life Sciences
Caenorhabditis elegans
Caenorhabditis elegans - physiology
Computational Biology
Control
Engineering and Technology
Evolutionary algorithms
Experiments
Genetic algorithms
Locomotion - physiology
Methods
Models, Neurological
Navigation behavior
Nematodes
Neurons
Organs
Physical Sciences
Research and Analysis Methods
Sense organs
Simulation
Social Sciences
Steering
Taxis (Locomotion)
Taxis Response - physiology
Temperature
Temperature gradients
Thermotaxis
Worms
title Persistent thermal input controls steering behavior in Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20thermal%20input%20controls%20steering%20behavior%20in%20Caenorhabditis%20elegans&rft.jtitle=PLoS%20computational%20biology&rft.au=Ikeda,%20Muneki&rft.date=2021-01-08&rft.volume=17&rft.issue=1&rft.spage=e1007916&rft.epage=e1007916&rft.pages=e1007916-e1007916&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/JOURNAL.PCBI.1007916&rft_dat=%3Cgale_plos_%3EA650814592%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490327501&rft_id=info:pmid/33417596&rft_galeid=A650814592&rft_doaj_id=oai_doaj_org_article_62f57864638d4a7aa1c6f73721afd3c0&rfr_iscdi=true