A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches
The objective of this study was to accurately predict the grip strength using a deep learning-based method (e.g., multi-layer perceptron [MLP] regression). The maximal grip strength with varying postures (upper arm, forearm, and lower body) of 164 young adults (100 males and 64 females) were collect...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-02, Vol.16 (2), p.e0246870-e0246870 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0246870 |
---|---|
container_issue | 2 |
container_start_page | e0246870 |
container_title | PloS one |
container_volume | 16 |
creator | Hwang, Jaejin Lee, Jinwon Lee, Kyung-Sun |
description | The objective of this study was to accurately predict the grip strength using a deep learning-based method (e.g., multi-layer perceptron [MLP] regression). The maximal grip strength with varying postures (upper arm, forearm, and lower body) of 164 young adults (100 males and 64 females) were collected. The data set was divided into a training set (90% of data) and a test set (10% of data). Different combinations of variables including demographic and anthropometric information of individual participants and postures was tested and compared to find the most predictive model. The MLP regression and 3 different polynomial regressions (linear, quadratic, and cubic) were conducted and the performance of regression was compared. The results showed that including all variables showed better performance than other combinations of variables. In general, MLP regression showed higher performance than polynomial regressions. Especially, MLP regression considering all variables achieved the highest performance of grip strength prediction (RMSE = 69.01N, R = 0.88, ICC = 0.92). This deep learning-based regression (MLP) would be useful to predict on-site- and individual-specific grip strength in the workspace to reduce the risk of musculoskeletal disorders in the upper extremity. |
doi_str_mv | 10.1371/journal.pone.0246870 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2488535268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651503052</galeid><doaj_id>oai_doaj_org_article_63eb47d7bd4d4393a02c2fcd90fac349</doaj_id><sourcerecordid>A651503052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-7ec42b47500f4c268f2fe4a4be2cb713f2eb2cd04039675302eedb07c1b213a3</originalsourceid><addsrcrecordid>eNqNk99rFDEQxxdRbK3-B6IBQfThzmyS3ez6IJTij4NCQYuvIZvM7qVkk22SFfvsP26udy130gfJQ0LmM9_MTGaK4mWJlyXl5YcrPwcn7XLyDpaYsLrh-FFxXLaULGqC6eO981HxLMYrjCva1PXT4ojSipe0bI6LP6dIA0zIggzOuGHRyQgajZDWXqPeBzQEM6GYArghrdEUQBuVjHcf0ZkfJxlM9A75Ho2zTcbKGwhogqBgSiEbpNNo8vbG-dFIiwIMAWI0G8s0BS_VGuLz4kkvbYQXu_2kuPzy-fLs2-L84uvq7PR8oXjVpAUHxUjHeIVxzxSpm570wCTrgKgup9MT6IjSmGHa1ryimADoDnNVdqSkkp4Ur7eyk_VR7MoXBWFNU9Eq62VitSW0l1diCmaU4UZ4acTthQ-DkCEZZUHUFHIomneaaUZbKjFRpFe6xb1UlLVZ69PutbkbQStwKUh7IHpocWYtBv9L8IbzquVZ4N1OIPjrGWISo4kKrJUO_Hwbd0s4YXSDvvkHfTi7HTXInIBxvc_vqo2oOK2rssIUVyRTyweovDSMRuVe602-P3B4f-CQmQS_0yDnGMXqx_f_Zy9-HrJv99g1SJvW0dt503vxEGRbUAUfY4D-vsglFptRuauG2IyK2I1Kdnu1_0H3TnezQf8C6-wRPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488535268</pqid></control><display><type>article</type><title>A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Hwang, Jaejin ; Lee, Jinwon ; Lee, Kyung-Sun</creator><creatorcontrib>Hwang, Jaejin ; Lee, Jinwon ; Lee, Kyung-Sun</creatorcontrib><description>The objective of this study was to accurately predict the grip strength using a deep learning-based method (e.g., multi-layer perceptron [MLP] regression). The maximal grip strength with varying postures (upper arm, forearm, and lower body) of 164 young adults (100 males and 64 females) were collected. The data set was divided into a training set (90% of data) and a test set (10% of data). Different combinations of variables including demographic and anthropometric information of individual participants and postures was tested and compared to find the most predictive model. The MLP regression and 3 different polynomial regressions (linear, quadratic, and cubic) were conducted and the performance of regression was compared. The results showed that including all variables showed better performance than other combinations of variables. In general, MLP regression showed higher performance than polynomial regressions. Especially, MLP regression considering all variables achieved the highest performance of grip strength prediction (RMSE = 69.01N, R = 0.88, ICC = 0.92). This deep learning-based regression (MLP) would be useful to predict on-site- and individual-specific grip strength in the workspace to reduce the risk of musculoskeletal disorders in the upper extremity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0246870</identifier><identifier>PMID: 33571318</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Biology and Life Sciences ; Body measurements ; Computer and Information Sciences ; Computer vision ; Data analysis ; Deep learning ; Demographic aspects ; Dependent variables ; Editing ; Forecasts and trends ; Grip strength ; Health risks ; Independent variables ; Information processing ; Learning algorithms ; Long short-term memory ; Machine learning ; Measurement ; Mechanical engineering ; Medicine and Health Sciences ; Multilayer perceptrons ; Neural networks ; Physical Sciences ; Polynomials ; Posture ; Regression analysis ; Research and Analysis Methods ; Standard deviation ; Statistical analysis ; Systems engineering ; Variables ; Young adults</subject><ispartof>PloS one, 2021-02, Vol.16 (2), p.e0246870-e0246870</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Hwang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Hwang et al 2021 Hwang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-7ec42b47500f4c268f2fe4a4be2cb713f2eb2cd04039675302eedb07c1b213a3</citedby><cites>FETCH-LOGICAL-c758t-7ec42b47500f4c268f2fe4a4be2cb713f2eb2cd04039675302eedb07c1b213a3</cites><orcidid>0000-0003-4810-1014 ; 0000-0002-4783-5860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877597/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877597/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33571318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Jaejin</creatorcontrib><creatorcontrib>Lee, Jinwon</creatorcontrib><creatorcontrib>Lee, Kyung-Sun</creatorcontrib><title>A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The objective of this study was to accurately predict the grip strength using a deep learning-based method (e.g., multi-layer perceptron [MLP] regression). The maximal grip strength with varying postures (upper arm, forearm, and lower body) of 164 young adults (100 males and 64 females) were collected. The data set was divided into a training set (90% of data) and a test set (10% of data). Different combinations of variables including demographic and anthropometric information of individual participants and postures was tested and compared to find the most predictive model. The MLP regression and 3 different polynomial regressions (linear, quadratic, and cubic) were conducted and the performance of regression was compared. The results showed that including all variables showed better performance than other combinations of variables. In general, MLP regression showed higher performance than polynomial regressions. Especially, MLP regression considering all variables achieved the highest performance of grip strength prediction (RMSE = 69.01N, R = 0.88, ICC = 0.92). This deep learning-based regression (MLP) would be useful to predict on-site- and individual-specific grip strength in the workspace to reduce the risk of musculoskeletal disorders in the upper extremity.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Body measurements</subject><subject>Computer and Information Sciences</subject><subject>Computer vision</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>Demographic aspects</subject><subject>Dependent variables</subject><subject>Editing</subject><subject>Forecasts and trends</subject><subject>Grip strength</subject><subject>Health risks</subject><subject>Independent variables</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Mechanical engineering</subject><subject>Medicine and Health Sciences</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Physical Sciences</subject><subject>Polynomials</subject><subject>Posture</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Standard deviation</subject><subject>Statistical analysis</subject><subject>Systems engineering</subject><subject>Variables</subject><subject>Young adults</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99rFDEQxxdRbK3-B6IBQfThzmyS3ez6IJTij4NCQYuvIZvM7qVkk22SFfvsP26udy130gfJQ0LmM9_MTGaK4mWJlyXl5YcrPwcn7XLyDpaYsLrh-FFxXLaULGqC6eO981HxLMYrjCva1PXT4ojSipe0bI6LP6dIA0zIggzOuGHRyQgajZDWXqPeBzQEM6GYArghrdEUQBuVjHcf0ZkfJxlM9A75Ho2zTcbKGwhogqBgSiEbpNNo8vbG-dFIiwIMAWI0G8s0BS_VGuLz4kkvbYQXu_2kuPzy-fLs2-L84uvq7PR8oXjVpAUHxUjHeIVxzxSpm570wCTrgKgup9MT6IjSmGHa1ryimADoDnNVdqSkkp4Ur7eyk_VR7MoXBWFNU9Eq62VitSW0l1diCmaU4UZ4acTthQ-DkCEZZUHUFHIomneaaUZbKjFRpFe6xb1UlLVZ69PutbkbQStwKUh7IHpocWYtBv9L8IbzquVZ4N1OIPjrGWISo4kKrJUO_Hwbd0s4YXSDvvkHfTi7HTXInIBxvc_vqo2oOK2rssIUVyRTyweovDSMRuVe602-P3B4f-CQmQS_0yDnGMXqx_f_Zy9-HrJv99g1SJvW0dt503vxEGRbUAUfY4D-vsglFptRuauG2IyK2I1Kdnu1_0H3TnezQf8C6-wRPQ</recordid><startdate>20210211</startdate><enddate>20210211</enddate><creator>Hwang, Jaejin</creator><creator>Lee, Jinwon</creator><creator>Lee, Kyung-Sun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4810-1014</orcidid><orcidid>https://orcid.org/0000-0002-4783-5860</orcidid></search><sort><creationdate>20210211</creationdate><title>A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches</title><author>Hwang, Jaejin ; Lee, Jinwon ; Lee, Kyung-Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-7ec42b47500f4c268f2fe4a4be2cb713f2eb2cd04039675302eedb07c1b213a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Body measurements</topic><topic>Computer and Information Sciences</topic><topic>Computer vision</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>Demographic aspects</topic><topic>Dependent variables</topic><topic>Editing</topic><topic>Forecasts and trends</topic><topic>Grip strength</topic><topic>Health risks</topic><topic>Independent variables</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Mechanical engineering</topic><topic>Medicine and Health Sciences</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Physical Sciences</topic><topic>Polynomials</topic><topic>Posture</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Standard deviation</topic><topic>Statistical analysis</topic><topic>Systems engineering</topic><topic>Variables</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Jaejin</creatorcontrib><creatorcontrib>Lee, Jinwon</creatorcontrib><creatorcontrib>Lee, Kyung-Sun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Jaejin</au><au>Lee, Jinwon</au><au>Lee, Kyung-Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-02-11</date><risdate>2021</risdate><volume>16</volume><issue>2</issue><spage>e0246870</spage><epage>e0246870</epage><pages>e0246870-e0246870</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The objective of this study was to accurately predict the grip strength using a deep learning-based method (e.g., multi-layer perceptron [MLP] regression). The maximal grip strength with varying postures (upper arm, forearm, and lower body) of 164 young adults (100 males and 64 females) were collected. The data set was divided into a training set (90% of data) and a test set (10% of data). Different combinations of variables including demographic and anthropometric information of individual participants and postures was tested and compared to find the most predictive model. The MLP regression and 3 different polynomial regressions (linear, quadratic, and cubic) were conducted and the performance of regression was compared. The results showed that including all variables showed better performance than other combinations of variables. In general, MLP regression showed higher performance than polynomial regressions. Especially, MLP regression considering all variables achieved the highest performance of grip strength prediction (RMSE = 69.01N, R = 0.88, ICC = 0.92). This deep learning-based regression (MLP) would be useful to predict on-site- and individual-specific grip strength in the workspace to reduce the risk of musculoskeletal disorders in the upper extremity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33571318</pmid><doi>10.1371/journal.pone.0246870</doi><tpages>e0246870</tpages><orcidid>https://orcid.org/0000-0003-4810-1014</orcidid><orcidid>https://orcid.org/0000-0002-4783-5860</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-02, Vol.16 (2), p.e0246870-e0246870 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2488535268 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Accuracy Algorithms Artificial neural networks Biology and Life Sciences Body measurements Computer and Information Sciences Computer vision Data analysis Deep learning Demographic aspects Dependent variables Editing Forecasts and trends Grip strength Health risks Independent variables Information processing Learning algorithms Long short-term memory Machine learning Measurement Mechanical engineering Medicine and Health Sciences Multilayer perceptrons Neural networks Physical Sciences Polynomials Posture Regression analysis Research and Analysis Methods Standard deviation Statistical analysis Systems engineering Variables Young adults |
title | A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning-based%20method%20for%20grip%20strength%20prediction:%20Comparison%20of%20multilayer%20perceptron%20and%20polynomial%20regression%20approaches&rft.jtitle=PloS%20one&rft.au=Hwang,%20Jaejin&rft.date=2021-02-11&rft.volume=16&rft.issue=2&rft.spage=e0246870&rft.epage=e0246870&rft.pages=e0246870-e0246870&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0246870&rft_dat=%3Cgale_plos_%3EA651503052%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488535268&rft_id=info:pmid/33571318&rft_galeid=A651503052&rft_doaj_id=oai_doaj_org_article_63eb47d7bd4d4393a02c2fcd90fac349&rfr_iscdi=true |