Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver

The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-01, Vol.16 (1), p.e0245749-e0245749
Hauptverfasser: Hao, Zhuang, Li, Zhen, Huo, Jinjin, Li, Jiandong, Liu, Fenghua, Yin, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0245749
container_issue 1
container_start_page e0245749
container_title PloS one
container_volume 16
creator Hao, Zhuang
Li, Zhen
Huo, Jinjin
Li, Jiandong
Liu, Fenghua
Yin, Peng
description The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day-old Tibetan black pigs (35±2 kg) were divided randomly into two groups. The WAE group was fed a basal diet supplemented with 1% WAE for 90 days. The control group was fed the same diet, but without the WAE. We found that liver superoxide dismutase 1 (SOD1) activity (P
doi_str_mv 10.1371/journal.pone.0245749
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2481579080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649826418</galeid><doaj_id>oai_doaj_org_article_2f15d528bb6c4896b71a1a463eeca90d</doaj_id><sourcerecordid>A649826418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-7e50e1176fc1289e6ac169a01410db43ce5073ea412abc5dbed2b1b5c57a9fb73</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0eKvOMkNUjUNqDRpEgxuLds5aV25cbGdsf57nDWbGrQL5Atb5zzntX0-suw1RnNMS_xp43rfSTvfuQ7miLCiZPWT7BTXlMw4QfTp0fkkexHCBqGCVpw_z04oLRBFpDzNmou2BR1D7tr8fG06CJD_cbZV4P0-l12TL0L0ciVtH3K4TUcdc9flcQ3JG427NU3acy13Upu4H3SujYIou3xnVrk1N-BfZs9aaQO8Gvez7OeXi-vzb7PLq6_L88XlTPOaxFkJBQKMS95qTKoauNSY1xJhhlGjGNXJX1KQDBOpdNEoaIjCqtBFKetWlfQse3vQ3VkXxJigIAircFHWqEKJWB6IxsmN2HmzlX4vnDTizuD8SkgfjbYgSIuLpiCVUlyzquaqxBJLximAljVqktbn8bZebaHR0KXs2Ino1NOZtVi5G1FWLJWCJIEPo4B3v3sIUWxN0GCt7MD1d-8mnPOaVwl99w_6-O9GKpULhOlaN9RrEBULzuqkxvCgNX-ESquBrdGpm1qT7JOAj5OAxMTUCivZhyCWP77_P3v1a8q-P2LXIG1cB2f71FVdmILsAGrvQvDQPiQZIzEMw302xDAMYhyGFPbmuEAPQffdT_8CxDAFJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481579080</pqid></control><display><type>article</type><title>Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hao, Zhuang ; Li, Zhen ; Huo, Jinjin ; Li, Jiandong ; Liu, Fenghua ; Yin, Peng</creator><contributor>Aceto, Serena</contributor><creatorcontrib>Hao, Zhuang ; Li, Zhen ; Huo, Jinjin ; Li, Jiandong ; Liu, Fenghua ; Yin, Peng ; Aceto, Serena</creatorcontrib><description>The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day-old Tibetan black pigs (35±2 kg) were divided randomly into two groups. The WAE group was fed a basal diet supplemented with 1% WAE for 90 days. The control group was fed the same diet, but without the WAE. We found that liver superoxide dismutase 1 (SOD1) activity (P&lt;0.05), total antioxidative capacity (T-AOC) (P&lt;0.05), and catalase (CAT) activity (P&lt;0.01) significantly increased in the WAE group compared with the control group; malondialdehyde (MDA) content decreased, but this was not significant (P &gt;0.05). Transcriptome sequencing analysis detected 106 differentially expressed genes (DEGs) related to oxidative stress. GO enrichment analysis showed these DEGs were involved in the positive regulation of reactive oxygen metabolism and biosynthesis, process regulation, and regulation of the oxidative stress response. KEGG Pathway enrichment analysis showed they were enriched in the PI3K-Akt, AMPK, Rap1, and peroxisome signaling pathways. The expression levels of key peroxisome biosynthesis genes (e.g., PEX3 and PEX11B) and key antioxidant genes (e.g., CAT and SOD1) were significantly higher in the WAE group than in the control group. The PRDX1 and PRDX5 content also was significantly higher in the WAE group. This study showed that the WAE regulated the antioxidant and anti-stress ability of Tibetan pig liver through a "peroxisome antioxidant-oxidant stress" signaling pathway.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0245749</identifier><identifier>PMID: 33503027</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal husbandry ; Animal sciences ; Animals ; Antioxidants ; Antioxidants - pharmacology ; Astragalus (Plants) ; Astragalus membranaceus ; Astragalus Plant - chemistry ; Biology and Life Sciences ; Biotechnology industry ; Breeding ; Breeding methods ; Chemical synthesis ; Coliforms ; Deoxyribonucleic acid ; Diet ; DNA ; DNA biosynthesis ; DNA polymerase ; DNA-directed DNA polymerase ; E coli ; Economic impact ; Enzymes ; Exonuclease ; Free radicals ; Gases ; Gene expression ; Genomes ; Health aspects ; High fat diet ; High protein diet ; High temperature ; Hogs ; Immune response ; Ingredients ; Intestine ; Laboratory animals ; Liver ; Liver - drug effects ; Liver - metabolism ; Lycium ; Lycium - chemistry ; Lycium barbarum ; Oligonucleotides ; Oxidative stress ; People and Places ; Peroxins - genetics ; Peroxins - metabolism ; Peroxisomes - metabolism ; Physiological aspects ; Plant extracts ; Plant Extracts - pharmacology ; Polysaccharides ; Ribonuclease H ; Saccharides ; Signal Transduction ; Swine ; Weaning ; Zoology</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0245749-e0245749</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Hao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Hao et al 2021 Hao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-7e50e1176fc1289e6ac169a01410db43ce5073ea412abc5dbed2b1b5c57a9fb73</citedby><cites>FETCH-LOGICAL-c692t-7e50e1176fc1289e6ac169a01410db43ce5073ea412abc5dbed2b1b5c57a9fb73</cites><orcidid>0000-0001-7713-8604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840052/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840052/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33503027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aceto, Serena</contributor><creatorcontrib>Hao, Zhuang</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Huo, Jinjin</creatorcontrib><creatorcontrib>Li, Jiandong</creatorcontrib><creatorcontrib>Liu, Fenghua</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><title>Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day-old Tibetan black pigs (35±2 kg) were divided randomly into two groups. The WAE group was fed a basal diet supplemented with 1% WAE for 90 days. The control group was fed the same diet, but without the WAE. We found that liver superoxide dismutase 1 (SOD1) activity (P&lt;0.05), total antioxidative capacity (T-AOC) (P&lt;0.05), and catalase (CAT) activity (P&lt;0.01) significantly increased in the WAE group compared with the control group; malondialdehyde (MDA) content decreased, but this was not significant (P &gt;0.05). Transcriptome sequencing analysis detected 106 differentially expressed genes (DEGs) related to oxidative stress. GO enrichment analysis showed these DEGs were involved in the positive regulation of reactive oxygen metabolism and biosynthesis, process regulation, and regulation of the oxidative stress response. KEGG Pathway enrichment analysis showed they were enriched in the PI3K-Akt, AMPK, Rap1, and peroxisome signaling pathways. The expression levels of key peroxisome biosynthesis genes (e.g., PEX3 and PEX11B) and key antioxidant genes (e.g., CAT and SOD1) were significantly higher in the WAE group than in the control group. The PRDX1 and PRDX5 content also was significantly higher in the WAE group. This study showed that the WAE regulated the antioxidant and anti-stress ability of Tibetan pig liver through a "peroxisome antioxidant-oxidant stress" signaling pathway.</description><subject>Animal husbandry</subject><subject>Animal sciences</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Astragalus (Plants)</subject><subject>Astragalus membranaceus</subject><subject>Astragalus Plant - chemistry</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology industry</subject><subject>Breeding</subject><subject>Breeding methods</subject><subject>Chemical synthesis</subject><subject>Coliforms</subject><subject>Deoxyribonucleic acid</subject><subject>Diet</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA polymerase</subject><subject>DNA-directed DNA polymerase</subject><subject>E coli</subject><subject>Economic impact</subject><subject>Enzymes</subject><subject>Exonuclease</subject><subject>Free radicals</subject><subject>Gases</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>High fat diet</subject><subject>High protein diet</subject><subject>High temperature</subject><subject>Hogs</subject><subject>Immune response</subject><subject>Ingredients</subject><subject>Intestine</subject><subject>Laboratory animals</subject><subject>Liver</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Lycium</subject><subject>Lycium - chemistry</subject><subject>Lycium barbarum</subject><subject>Oligonucleotides</subject><subject>Oxidative stress</subject><subject>People and Places</subject><subject>Peroxins - genetics</subject><subject>Peroxins - metabolism</subject><subject>Peroxisomes - metabolism</subject><subject>Physiological aspects</subject><subject>Plant extracts</subject><subject>Plant Extracts - pharmacology</subject><subject>Polysaccharides</subject><subject>Ribonuclease H</subject><subject>Saccharides</subject><subject>Signal Transduction</subject><subject>Swine</subject><subject>Weaning</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0eKvOMkNUjUNqDRpEgxuLds5aV25cbGdsf57nDWbGrQL5Atb5zzntX0-suw1RnNMS_xp43rfSTvfuQ7miLCiZPWT7BTXlMw4QfTp0fkkexHCBqGCVpw_z04oLRBFpDzNmou2BR1D7tr8fG06CJD_cbZV4P0-l12TL0L0ciVtH3K4TUcdc9flcQ3JG427NU3acy13Upu4H3SujYIou3xnVrk1N-BfZs9aaQO8Gvez7OeXi-vzb7PLq6_L88XlTPOaxFkJBQKMS95qTKoauNSY1xJhhlGjGNXJX1KQDBOpdNEoaIjCqtBFKetWlfQse3vQ3VkXxJigIAircFHWqEKJWB6IxsmN2HmzlX4vnDTizuD8SkgfjbYgSIuLpiCVUlyzquaqxBJLximAljVqktbn8bZebaHR0KXs2Ino1NOZtVi5G1FWLJWCJIEPo4B3v3sIUWxN0GCt7MD1d-8mnPOaVwl99w_6-O9GKpULhOlaN9RrEBULzuqkxvCgNX-ESquBrdGpm1qT7JOAj5OAxMTUCivZhyCWP77_P3v1a8q-P2LXIG1cB2f71FVdmILsAGrvQvDQPiQZIzEMw302xDAMYhyGFPbmuEAPQffdT_8CxDAFJQ</recordid><startdate>20210127</startdate><enddate>20210127</enddate><creator>Hao, Zhuang</creator><creator>Li, Zhen</creator><creator>Huo, Jinjin</creator><creator>Li, Jiandong</creator><creator>Liu, Fenghua</creator><creator>Yin, Peng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7713-8604</orcidid></search><sort><creationdate>20210127</creationdate><title>Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver</title><author>Hao, Zhuang ; Li, Zhen ; Huo, Jinjin ; Li, Jiandong ; Liu, Fenghua ; Yin, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-7e50e1176fc1289e6ac169a01410db43ce5073ea412abc5dbed2b1b5c57a9fb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal husbandry</topic><topic>Animal sciences</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Astragalus (Plants)</topic><topic>Astragalus membranaceus</topic><topic>Astragalus Plant - chemistry</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology industry</topic><topic>Breeding</topic><topic>Breeding methods</topic><topic>Chemical synthesis</topic><topic>Coliforms</topic><topic>Deoxyribonucleic acid</topic><topic>Diet</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA polymerase</topic><topic>DNA-directed DNA polymerase</topic><topic>E coli</topic><topic>Economic impact</topic><topic>Enzymes</topic><topic>Exonuclease</topic><topic>Free radicals</topic><topic>Gases</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>High fat diet</topic><topic>High protein diet</topic><topic>High temperature</topic><topic>Hogs</topic><topic>Immune response</topic><topic>Ingredients</topic><topic>Intestine</topic><topic>Laboratory animals</topic><topic>Liver</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Lycium</topic><topic>Lycium - chemistry</topic><topic>Lycium barbarum</topic><topic>Oligonucleotides</topic><topic>Oxidative stress</topic><topic>People and Places</topic><topic>Peroxins - genetics</topic><topic>Peroxins - metabolism</topic><topic>Peroxisomes - metabolism</topic><topic>Physiological aspects</topic><topic>Plant extracts</topic><topic>Plant Extracts - pharmacology</topic><topic>Polysaccharides</topic><topic>Ribonuclease H</topic><topic>Saccharides</topic><topic>Signal Transduction</topic><topic>Swine</topic><topic>Weaning</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Zhuang</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Huo, Jinjin</creatorcontrib><creatorcontrib>Li, Jiandong</creatorcontrib><creatorcontrib>Liu, Fenghua</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Zhuang</au><au>Li, Zhen</au><au>Huo, Jinjin</au><au>Li, Jiandong</au><au>Liu, Fenghua</au><au>Yin, Peng</au><au>Aceto, Serena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-27</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0245749</spage><epage>e0245749</epage><pages>e0245749-e0245749</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day-old Tibetan black pigs (35±2 kg) were divided randomly into two groups. The WAE group was fed a basal diet supplemented with 1% WAE for 90 days. The control group was fed the same diet, but without the WAE. We found that liver superoxide dismutase 1 (SOD1) activity (P&lt;0.05), total antioxidative capacity (T-AOC) (P&lt;0.05), and catalase (CAT) activity (P&lt;0.01) significantly increased in the WAE group compared with the control group; malondialdehyde (MDA) content decreased, but this was not significant (P &gt;0.05). Transcriptome sequencing analysis detected 106 differentially expressed genes (DEGs) related to oxidative stress. GO enrichment analysis showed these DEGs were involved in the positive regulation of reactive oxygen metabolism and biosynthesis, process regulation, and regulation of the oxidative stress response. KEGG Pathway enrichment analysis showed they were enriched in the PI3K-Akt, AMPK, Rap1, and peroxisome signaling pathways. The expression levels of key peroxisome biosynthesis genes (e.g., PEX3 and PEX11B) and key antioxidant genes (e.g., CAT and SOD1) were significantly higher in the WAE group than in the control group. The PRDX1 and PRDX5 content also was significantly higher in the WAE group. This study showed that the WAE regulated the antioxidant and anti-stress ability of Tibetan pig liver through a "peroxisome antioxidant-oxidant stress" signaling pathway.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33503027</pmid><doi>10.1371/journal.pone.0245749</doi><tpages>e0245749</tpages><orcidid>https://orcid.org/0000-0001-7713-8604</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-01, Vol.16 (1), p.e0245749-e0245749
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2481579080
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animal husbandry
Animal sciences
Animals
Antioxidants
Antioxidants - pharmacology
Astragalus (Plants)
Astragalus membranaceus
Astragalus Plant - chemistry
Biology and Life Sciences
Biotechnology industry
Breeding
Breeding methods
Chemical synthesis
Coliforms
Deoxyribonucleic acid
Diet
DNA
DNA biosynthesis
DNA polymerase
DNA-directed DNA polymerase
E coli
Economic impact
Enzymes
Exonuclease
Free radicals
Gases
Gene expression
Genomes
Health aspects
High fat diet
High protein diet
High temperature
Hogs
Immune response
Ingredients
Intestine
Laboratory animals
Liver
Liver - drug effects
Liver - metabolism
Lycium
Lycium - chemistry
Lycium barbarum
Oligonucleotides
Oxidative stress
People and Places
Peroxins - genetics
Peroxins - metabolism
Peroxisomes - metabolism
Physiological aspects
Plant extracts
Plant Extracts - pharmacology
Polysaccharides
Ribonuclease H
Saccharides
Signal Transduction
Swine
Weaning
Zoology
title Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Chinese%20wolfberry%20and%20Astragalus%20extract%20on%20the%20antioxidant%20capacity%20of%20Tibetan%20pig%20liver&rft.jtitle=PloS%20one&rft.au=Hao,%20Zhuang&rft.date=2021-01-27&rft.volume=16&rft.issue=1&rft.spage=e0245749&rft.epage=e0245749&rft.pages=e0245749-e0245749&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0245749&rft_dat=%3Cgale_plos_%3EA649826418%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481579080&rft_id=info:pmid/33503027&rft_galeid=A649826418&rft_doaj_id=oai_doaj_org_article_2f15d528bb6c4896b71a1a463eeca90d&rfr_iscdi=true