A dynamic generalized fuzzy multi-criteria croup decision making approach for green supplier segmentation

Supplier selection and segmentation are crucial tasks of companies in order to reduce costs and increase the competitiveness of their goods. To handle uncertainty and dynamicity in the supplier segmentation problem, this research thus proposes a new dynamic generalized fuzzy multi-criteria group dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-01, Vol.16 (1), p.e0245187-e0245187
Hauptverfasser: Duc, Do Anh, Van, Luu Huu, Yu, Vincent F, Chou, Shuo-Yan, Hien, Ngo Van, Chi, Ngo The, Toan, Dinh Van, Dat, Luu Quoc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0245187
container_issue 1
container_start_page e0245187
container_title PloS one
container_volume 16
creator Duc, Do Anh
Van, Luu Huu
Yu, Vincent F
Chou, Shuo-Yan
Hien, Ngo Van
Chi, Ngo The
Toan, Dinh Van
Dat, Luu Quoc
description Supplier selection and segmentation are crucial tasks of companies in order to reduce costs and increase the competitiveness of their goods. To handle uncertainty and dynamicity in the supplier segmentation problem, this research thus proposes a new dynamic generalized fuzzy multi-criteria group decision making (MCGDM) approach from the aspects of capability and willingness and with respect to environmental issues. The proposed approach defines the aggregated ratings of alternatives, the aggregated weights of criteria, and the weighted ratings by using generalized fuzzy numbers with the effect of time weight. Next, we determine the ranking order of alternatives via a popular centroid-index ranking approach. Finally, two case studies demonstrate the efficiency of the proposed dynamic approach. The applications show that the proposed appoach is effective in solving the MCGDM in vague environment.
doi_str_mv 10.1371/journal.pone.0245187
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2480722563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649640717</galeid><doaj_id>oai_doaj_org_article_4bd102bcb93c41328a38c95f19b30b31</doaj_id><sourcerecordid>A649640717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-83033bbed91933a90c8f5f7ee373179420967bd139faa6154bbd47d86fc5b3c33</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3nn6H4gGBNGHXZNO-iMvwnL4Y-HgwF-vIU2n3axtU5NW3P3rTW_3jq3cg-QhYfKZ72QmM1H0nNElg4y929rRdapZ9rbDJY15wvLsQXTOBMSLNKbw8OR8Fj3xfktpAnmaPo7OALgAlvPzyKxIuetUazSpsUOnGrPHklTjfr8j7dgMZqGdGdAZRbSzY09K1MYb25FW_TRdTVTfO6v0hlTWkdohdsSPfd8YdMRj3WI3qCHwT6NHlWo8PjvuF9H3jx--XX5eXF1_Wl-urhY6FfGwyIECFAWWIrwelKA6r5IqQ4QMWCZ4TEWaFSUDUSmVsoQXRcmzMk8rnRSgAS6ilwfdvrFeHqvkZcxzmsVxkk7E-kCUVm1l70yr3E5aZeSNwbpaKjcY3aDkIRKNC10I0JxBnCvItUgqJgqgBbCg9f4YbSxaLHXINtRwJjq_6cxG1va3zHIAlmRB4M1RwNlfI_pBtsZrbBrVoR1v3s3Cf0PMA_rqH_T-7I5UrUICpqtsiKsnUblKuUg5zdgUdnkPFVaJoRdCS1Um2GcOb2cOgRnwz1Cr0Xu5_vrl_9nrH3P29Qm7QdUMG2-bcWoZPwf5AQxt6L3D6q7IjMppIm6rIaeJkMeJCG4vTj_ozul2BOAvjtAG_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480722563</pqid></control><display><type>article</type><title>A dynamic generalized fuzzy multi-criteria croup decision making approach for green supplier segmentation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Duc, Do Anh ; Van, Luu Huu ; Yu, Vincent F ; Chou, Shuo-Yan ; Hien, Ngo Van ; Chi, Ngo The ; Toan, Dinh Van ; Dat, Luu Quoc</creator><creatorcontrib>Duc, Do Anh ; Van, Luu Huu ; Yu, Vincent F ; Chou, Shuo-Yan ; Hien, Ngo Van ; Chi, Ngo The ; Toan, Dinh Van ; Dat, Luu Quoc</creatorcontrib><description>Supplier selection and segmentation are crucial tasks of companies in order to reduce costs and increase the competitiveness of their goods. To handle uncertainty and dynamicity in the supplier segmentation problem, this research thus proposes a new dynamic generalized fuzzy multi-criteria group decision making (MCGDM) approach from the aspects of capability and willingness and with respect to environmental issues. The proposed approach defines the aggregated ratings of alternatives, the aggregated weights of criteria, and the weighted ratings by using generalized fuzzy numbers with the effect of time weight. Next, we determine the ranking order of alternatives via a popular centroid-index ranking approach. Finally, two case studies demonstrate the efficiency of the proposed dynamic approach. The applications show that the proposed appoach is effective in solving the MCGDM in vague environment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0245187</identifier><identifier>PMID: 33493184</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Component and supplier management ; Computer and Information Sciences ; Croup ; Data analysis ; Decision Making ; Decision-making, Group ; Economic analysis ; Economics ; Editing ; Electronic mail ; Engineering and Technology ; Fuzzy algorithms ; Fuzzy Logic ; Fuzzy systems ; Industrial management ; Management ; Methodology ; Methods ; Models, Theoretical ; Multiple criterion ; Production costs ; Reviews ; Science and technology ; Segmentation ; Social Sciences ; Suppliers ; Technology ; Uncertainty ; Vendor relations ; Visualization</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0245187-e0245187</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Duc et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Duc et al 2021 Duc et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-83033bbed91933a90c8f5f7ee373179420967bd139faa6154bbd47d86fc5b3c33</citedby><cites>FETCH-LOGICAL-c692t-83033bbed91933a90c8f5f7ee373179420967bd139faa6154bbd47d86fc5b3c33</cites><orcidid>0000-0001-8340-0189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833157/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833157/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33493184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duc, Do Anh</creatorcontrib><creatorcontrib>Van, Luu Huu</creatorcontrib><creatorcontrib>Yu, Vincent F</creatorcontrib><creatorcontrib>Chou, Shuo-Yan</creatorcontrib><creatorcontrib>Hien, Ngo Van</creatorcontrib><creatorcontrib>Chi, Ngo The</creatorcontrib><creatorcontrib>Toan, Dinh Van</creatorcontrib><creatorcontrib>Dat, Luu Quoc</creatorcontrib><title>A dynamic generalized fuzzy multi-criteria croup decision making approach for green supplier segmentation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Supplier selection and segmentation are crucial tasks of companies in order to reduce costs and increase the competitiveness of their goods. To handle uncertainty and dynamicity in the supplier segmentation problem, this research thus proposes a new dynamic generalized fuzzy multi-criteria group decision making (MCGDM) approach from the aspects of capability and willingness and with respect to environmental issues. The proposed approach defines the aggregated ratings of alternatives, the aggregated weights of criteria, and the weighted ratings by using generalized fuzzy numbers with the effect of time weight. Next, we determine the ranking order of alternatives via a popular centroid-index ranking approach. Finally, two case studies demonstrate the efficiency of the proposed dynamic approach. The applications show that the proposed appoach is effective in solving the MCGDM in vague environment.</description><subject>Biology and Life Sciences</subject><subject>Component and supplier management</subject><subject>Computer and Information Sciences</subject><subject>Croup</subject><subject>Data analysis</subject><subject>Decision Making</subject><subject>Decision-making, Group</subject><subject>Economic analysis</subject><subject>Economics</subject><subject>Editing</subject><subject>Electronic mail</subject><subject>Engineering and Technology</subject><subject>Fuzzy algorithms</subject><subject>Fuzzy Logic</subject><subject>Fuzzy systems</subject><subject>Industrial management</subject><subject>Management</subject><subject>Methodology</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Multiple criterion</subject><subject>Production costs</subject><subject>Reviews</subject><subject>Science and technology</subject><subject>Segmentation</subject><subject>Social Sciences</subject><subject>Suppliers</subject><subject>Technology</subject><subject>Uncertainty</subject><subject>Vendor relations</subject><subject>Visualization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3nn6H4gGBNGHXZNO-iMvwnL4Y-HgwF-vIU2n3axtU5NW3P3rTW_3jq3cg-QhYfKZ72QmM1H0nNElg4y929rRdapZ9rbDJY15wvLsQXTOBMSLNKbw8OR8Fj3xfktpAnmaPo7OALgAlvPzyKxIuetUazSpsUOnGrPHklTjfr8j7dgMZqGdGdAZRbSzY09K1MYb25FW_TRdTVTfO6v0hlTWkdohdsSPfd8YdMRj3WI3qCHwT6NHlWo8PjvuF9H3jx--XX5eXF1_Wl-urhY6FfGwyIECFAWWIrwelKA6r5IqQ4QMWCZ4TEWaFSUDUSmVsoQXRcmzMk8rnRSgAS6ilwfdvrFeHqvkZcxzmsVxkk7E-kCUVm1l70yr3E5aZeSNwbpaKjcY3aDkIRKNC10I0JxBnCvItUgqJgqgBbCg9f4YbSxaLHXINtRwJjq_6cxG1va3zHIAlmRB4M1RwNlfI_pBtsZrbBrVoR1v3s3Cf0PMA_rqH_T-7I5UrUICpqtsiKsnUblKuUg5zdgUdnkPFVaJoRdCS1Um2GcOb2cOgRnwz1Cr0Xu5_vrl_9nrH3P29Qm7QdUMG2-bcWoZPwf5AQxt6L3D6q7IjMppIm6rIaeJkMeJCG4vTj_ozul2BOAvjtAG_g</recordid><startdate>20210125</startdate><enddate>20210125</enddate><creator>Duc, Do Anh</creator><creator>Van, Luu Huu</creator><creator>Yu, Vincent F</creator><creator>Chou, Shuo-Yan</creator><creator>Hien, Ngo Van</creator><creator>Chi, Ngo The</creator><creator>Toan, Dinh Van</creator><creator>Dat, Luu Quoc</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8340-0189</orcidid></search><sort><creationdate>20210125</creationdate><title>A dynamic generalized fuzzy multi-criteria croup decision making approach for green supplier segmentation</title><author>Duc, Do Anh ; Van, Luu Huu ; Yu, Vincent F ; Chou, Shuo-Yan ; Hien, Ngo Van ; Chi, Ngo The ; Toan, Dinh Van ; Dat, Luu Quoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-83033bbed91933a90c8f5f7ee373179420967bd139faa6154bbd47d86fc5b3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>Component and supplier management</topic><topic>Computer and Information Sciences</topic><topic>Croup</topic><topic>Data analysis</topic><topic>Decision Making</topic><topic>Decision-making, Group</topic><topic>Economic analysis</topic><topic>Economics</topic><topic>Editing</topic><topic>Electronic mail</topic><topic>Engineering and Technology</topic><topic>Fuzzy algorithms</topic><topic>Fuzzy Logic</topic><topic>Fuzzy systems</topic><topic>Industrial management</topic><topic>Management</topic><topic>Methodology</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Multiple criterion</topic><topic>Production costs</topic><topic>Reviews</topic><topic>Science and technology</topic><topic>Segmentation</topic><topic>Social Sciences</topic><topic>Suppliers</topic><topic>Technology</topic><topic>Uncertainty</topic><topic>Vendor relations</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duc, Do Anh</creatorcontrib><creatorcontrib>Van, Luu Huu</creatorcontrib><creatorcontrib>Yu, Vincent F</creatorcontrib><creatorcontrib>Chou, Shuo-Yan</creatorcontrib><creatorcontrib>Hien, Ngo Van</creatorcontrib><creatorcontrib>Chi, Ngo The</creatorcontrib><creatorcontrib>Toan, Dinh Van</creatorcontrib><creatorcontrib>Dat, Luu Quoc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duc, Do Anh</au><au>Van, Luu Huu</au><au>Yu, Vincent F</au><au>Chou, Shuo-Yan</au><au>Hien, Ngo Van</au><au>Chi, Ngo The</au><au>Toan, Dinh Van</au><au>Dat, Luu Quoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic generalized fuzzy multi-criteria croup decision making approach for green supplier segmentation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-25</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0245187</spage><epage>e0245187</epage><pages>e0245187-e0245187</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Supplier selection and segmentation are crucial tasks of companies in order to reduce costs and increase the competitiveness of their goods. To handle uncertainty and dynamicity in the supplier segmentation problem, this research thus proposes a new dynamic generalized fuzzy multi-criteria group decision making (MCGDM) approach from the aspects of capability and willingness and with respect to environmental issues. The proposed approach defines the aggregated ratings of alternatives, the aggregated weights of criteria, and the weighted ratings by using generalized fuzzy numbers with the effect of time weight. Next, we determine the ranking order of alternatives via a popular centroid-index ranking approach. Finally, two case studies demonstrate the efficiency of the proposed dynamic approach. The applications show that the proposed appoach is effective in solving the MCGDM in vague environment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33493184</pmid><doi>10.1371/journal.pone.0245187</doi><tpages>e0245187</tpages><orcidid>https://orcid.org/0000-0001-8340-0189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-01, Vol.16 (1), p.e0245187-e0245187
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2480722563
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Biology and Life Sciences
Component and supplier management
Computer and Information Sciences
Croup
Data analysis
Decision Making
Decision-making, Group
Economic analysis
Economics
Editing
Electronic mail
Engineering and Technology
Fuzzy algorithms
Fuzzy Logic
Fuzzy systems
Industrial management
Management
Methodology
Methods
Models, Theoretical
Multiple criterion
Production costs
Reviews
Science and technology
Segmentation
Social Sciences
Suppliers
Technology
Uncertainty
Vendor relations
Visualization
title A dynamic generalized fuzzy multi-criteria croup decision making approach for green supplier segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20generalized%20fuzzy%20multi-criteria%20croup%20decision%20making%20approach%20for%20green%20supplier%20segmentation&rft.jtitle=PloS%20one&rft.au=Duc,%20Do%20Anh&rft.date=2021-01-25&rft.volume=16&rft.issue=1&rft.spage=e0245187&rft.epage=e0245187&rft.pages=e0245187-e0245187&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0245187&rft_dat=%3Cgale_plos_%3EA649640717%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480722563&rft_id=info:pmid/33493184&rft_galeid=A649640717&rft_doaj_id=oai_doaj_org_article_4bd102bcb93c41328a38c95f19b30b31&rfr_iscdi=true