Bayesian algorithm to estimate position and activity of an orphan gamma source utilizing multiple detectors in a mobile gamma spectrometry system
To avoid harm to the public and the environment, lost ionizing radiation sources must be found and brought back under the regulatory control as soon as possible. Usually, mobile gamma spectrometry systems are used in such search missions. It is possible to estimate the position and activity of point...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-01, Vol.16 (1), p.e0245440-e0245440 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0245440 |
---|---|
container_issue | 1 |
container_start_page | e0245440 |
container_title | PloS one |
container_volume | 16 |
creator | Bukartas, Antanas Wallin, Jonas Finck, Robert Rääf, Christopher |
description | To avoid harm to the public and the environment, lost ionizing radiation sources must be found and brought back under the regulatory control as soon as possible. Usually, mobile gamma spectrometry systems are used in such search missions. It is possible to estimate the position and activity of point gamma sources by performing Bayesian inference on the measurement data. The aim of this study was to theoretically investigate the improvements in the Bayesian estimations of the position and activity of a point gamma source due to introduction of data from multiple detectors with angular variations of efficiency. Three detector combinations were tested-a single 123% HPGe detector, single 4l NaI (Tl) detector and a 123% HPGe with 2x4l NaI (Tl) detector combination-with and without angular efficiency variations for each combination resulting in six different variants of the Bayesian algorithm. It was found that introduction of angular efficiency variations of the detectors did improve the accuracy of activity estimation slightly, while introduction of data from additional detectors lowered the signal-to-noise ratio threshold of the system significantly, increasing the stability and accuracy of the estimated source position and activity, for a given signal-to-noise ratio. |
doi_str_mv | 10.1371/journal.pone.0245440 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2479993860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649336018</galeid><doaj_id>oai_doaj_org_article_2de4af1628334b62b59bfb84abc714dd</doaj_id><sourcerecordid>A649336018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c761t-99d06ce1ad6a2ddb5142d3b3b24176c07c7c2508e9c514ded3b2c390b052abae3</originalsourceid><addsrcrecordid>eNqNk21v1SAUxxujcXP6DYySmBh9ca9AW1remMzFhyVLlvj0lgClvSy0dECn12_hN_Zcb7esZi9MQ2k5v_MH_nCy7CnBa5JX5M2Fn8Ig3Xr0g1ljWpRFge9lh4TndMUozu_f-j7IHsV4gXGZ14w9zA7yvKhJXbLD7Pc7uTXRygFJ1_lg06ZHySMTk-1lMmj00SbrITw0SOpkr2zaIt_CP_Jh3EDXyb6XKMJytEFTss7-skOH-sklOzqDGpOMTj5EZEEG9V5ZGJ2zRggF35sUtihuYzL94-xBK100T-b-KPv24f3Xk0-rs_OPpyfHZytdMZJWnDeYaUNkwyRtGlWSgja5yhUtSMU0rnSlaYlrwzWEGgMxqnOOFS6pVNLkR9nzve7ofBSzm1HQouKcg08YiNM90Xh5IcYAjoSt8NKKvwM-dEKGZLUzgjamkC1htAZrFaOq5KpVdSGVrmD2BrTO9lrxhxkntVBz0whNQRPRCA7bIJIRUeAWXpyXopaqFbDq0nBFeVtokHs7L35SvWm0GVKQbqG6jAx2Izp_JaqaUloSEHg1CwR_OcFxi95GbZyTg_HTzoYa7hSD3QD64h_0brNmqpPghx1aD_Pqnag4ZgXPc4ZJDdT6DgqexvRWw01u4W4sE14vEoBJ5mfq5BSjOP3y-f_Z8-9L9uUtdmOkS5vo3bS763EJFntQBx9jMO2NyQSLXSFeuyF2hSjmQoS0Z7cP6CbpuvLyPx0jMVo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479993860</pqid></control><display><type>article</type><title>Bayesian algorithm to estimate position and activity of an orphan gamma source utilizing multiple detectors in a mobile gamma spectrometry system</title><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bukartas, Antanas ; Wallin, Jonas ; Finck, Robert ; Rääf, Christopher</creator><contributor>Hadizadeh, Mohammadreza</contributor><creatorcontrib>Bukartas, Antanas ; Wallin, Jonas ; Finck, Robert ; Rääf, Christopher ; Hadizadeh, Mohammadreza</creatorcontrib><description>To avoid harm to the public and the environment, lost ionizing radiation sources must be found and brought back under the regulatory control as soon as possible. Usually, mobile gamma spectrometry systems are used in such search missions. It is possible to estimate the position and activity of point gamma sources by performing Bayesian inference on the measurement data. The aim of this study was to theoretically investigate the improvements in the Bayesian estimations of the position and activity of a point gamma source due to introduction of data from multiple detectors with angular variations of efficiency. Three detector combinations were tested-a single 123% HPGe detector, single 4l NaI (Tl) detector and a 123% HPGe with 2x4l NaI (Tl) detector combination-with and without angular efficiency variations for each combination resulting in six different variants of the Bayesian algorithm. It was found that introduction of angular efficiency variations of the detectors did improve the accuracy of activity estimation slightly, while introduction of data from additional detectors lowered the signal-to-noise ratio threshold of the system significantly, increasing the stability and accuracy of the estimated source position and activity, for a given signal-to-noise ratio.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0245440</identifier><identifier>PMID: 33481856</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Atoms & subatomic particles ; Attenuation coefficients ; Bayesian analysis ; Bayesian statistical decision theory ; Clinical Medicine ; Computer programs ; Drafting software ; Editing ; Efficiency ; Energy ; Engineering and Technology ; Fluence ; Funding ; Gamma rays ; Incidence angle ; Ionizing radiation ; Klinisk medicin ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Methods ; Photomultiplier tubes ; Photons ; Physical Sciences ; Physics ; Radiation ; Radiation detectors ; Radiation shielding ; Radiation sources ; Radiologi och bildbehandling ; Radiology, Nuclear Medicine and Medical Imaging ; Research and Analysis Methods ; Reviews ; Scientific imaging ; Software ; Spectrometry ; Statistical analysis ; Velocity</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0245440-e0245440</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Bukartas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Bukartas et al 2021 Bukartas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c761t-99d06ce1ad6a2ddb5142d3b3b24176c07c7c2508e9c514ded3b2c390b052abae3</citedby><cites>FETCH-LOGICAL-c761t-99d06ce1ad6a2ddb5142d3b3b24176c07c7c2508e9c514ded3b2c390b052abae3</cites><orcidid>0000-0003-0381-6593 ; 0000-0002-8407-8993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822251/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822251/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33481856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/92d31a61-40f1-4995-8abf-2ab5e9b29f4c$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Hadizadeh, Mohammadreza</contributor><creatorcontrib>Bukartas, Antanas</creatorcontrib><creatorcontrib>Wallin, Jonas</creatorcontrib><creatorcontrib>Finck, Robert</creatorcontrib><creatorcontrib>Rääf, Christopher</creatorcontrib><title>Bayesian algorithm to estimate position and activity of an orphan gamma source utilizing multiple detectors in a mobile gamma spectrometry system</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To avoid harm to the public and the environment, lost ionizing radiation sources must be found and brought back under the regulatory control as soon as possible. Usually, mobile gamma spectrometry systems are used in such search missions. It is possible to estimate the position and activity of point gamma sources by performing Bayesian inference on the measurement data. The aim of this study was to theoretically investigate the improvements in the Bayesian estimations of the position and activity of a point gamma source due to introduction of data from multiple detectors with angular variations of efficiency. Three detector combinations were tested-a single 123% HPGe detector, single 4l NaI (Tl) detector and a 123% HPGe with 2x4l NaI (Tl) detector combination-with and without angular efficiency variations for each combination resulting in six different variants of the Bayesian algorithm. It was found that introduction of angular efficiency variations of the detectors did improve the accuracy of activity estimation slightly, while introduction of data from additional detectors lowered the signal-to-noise ratio threshold of the system significantly, increasing the stability and accuracy of the estimated source position and activity, for a given signal-to-noise ratio.</description><subject>Algorithms</subject><subject>Atoms & subatomic particles</subject><subject>Attenuation coefficients</subject><subject>Bayesian analysis</subject><subject>Bayesian statistical decision theory</subject><subject>Clinical Medicine</subject><subject>Computer programs</subject><subject>Drafting software</subject><subject>Editing</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Engineering and Technology</subject><subject>Fluence</subject><subject>Funding</subject><subject>Gamma rays</subject><subject>Incidence angle</subject><subject>Ionizing radiation</subject><subject>Klinisk medicin</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Methods</subject><subject>Photomultiplier tubes</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Radiation</subject><subject>Radiation detectors</subject><subject>Radiation shielding</subject><subject>Radiation sources</subject><subject>Radiologi och bildbehandling</subject><subject>Radiology, Nuclear Medicine and Medical Imaging</subject><subject>Research and Analysis Methods</subject><subject>Reviews</subject><subject>Scientific imaging</subject><subject>Software</subject><subject>Spectrometry</subject><subject>Statistical analysis</subject><subject>Velocity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21v1SAUxxujcXP6DYySmBh9ca9AW1remMzFhyVLlvj0lgClvSy0dECn12_hN_Zcb7esZi9MQ2k5v_MH_nCy7CnBa5JX5M2Fn8Ig3Xr0g1ljWpRFge9lh4TndMUozu_f-j7IHsV4gXGZ14w9zA7yvKhJXbLD7Pc7uTXRygFJ1_lg06ZHySMTk-1lMmj00SbrITw0SOpkr2zaIt_CP_Jh3EDXyb6XKMJytEFTss7-skOH-sklOzqDGpOMTj5EZEEG9V5ZGJ2zRggF35sUtihuYzL94-xBK100T-b-KPv24f3Xk0-rs_OPpyfHZytdMZJWnDeYaUNkwyRtGlWSgja5yhUtSMU0rnSlaYlrwzWEGgMxqnOOFS6pVNLkR9nzve7ofBSzm1HQouKcg08YiNM90Xh5IcYAjoSt8NKKvwM-dEKGZLUzgjamkC1htAZrFaOq5KpVdSGVrmD2BrTO9lrxhxkntVBz0whNQRPRCA7bIJIRUeAWXpyXopaqFbDq0nBFeVtokHs7L35SvWm0GVKQbqG6jAx2Izp_JaqaUloSEHg1CwR_OcFxi95GbZyTg_HTzoYa7hSD3QD64h_0brNmqpPghx1aD_Pqnag4ZgXPc4ZJDdT6DgqexvRWw01u4W4sE14vEoBJ5mfq5BSjOP3y-f_Z8-9L9uUtdmOkS5vo3bS763EJFntQBx9jMO2NyQSLXSFeuyF2hSjmQoS0Z7cP6CbpuvLyPx0jMVo</recordid><startdate>20210122</startdate><enddate>20210122</enddate><creator>Bukartas, Antanas</creator><creator>Wallin, Jonas</creator><creator>Finck, Robert</creator><creator>Rääf, Christopher</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0381-6593</orcidid><orcidid>https://orcid.org/0000-0002-8407-8993</orcidid></search><sort><creationdate>20210122</creationdate><title>Bayesian algorithm to estimate position and activity of an orphan gamma source utilizing multiple detectors in a mobile gamma spectrometry system</title><author>Bukartas, Antanas ; Wallin, Jonas ; Finck, Robert ; Rääf, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c761t-99d06ce1ad6a2ddb5142d3b3b24176c07c7c2508e9c514ded3b2c390b052abae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Atoms & subatomic particles</topic><topic>Attenuation coefficients</topic><topic>Bayesian analysis</topic><topic>Bayesian statistical decision theory</topic><topic>Clinical Medicine</topic><topic>Computer programs</topic><topic>Drafting software</topic><topic>Editing</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Engineering and Technology</topic><topic>Fluence</topic><topic>Funding</topic><topic>Gamma rays</topic><topic>Incidence angle</topic><topic>Ionizing radiation</topic><topic>Klinisk medicin</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Methods</topic><topic>Photomultiplier tubes</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Radiation</topic><topic>Radiation detectors</topic><topic>Radiation shielding</topic><topic>Radiation sources</topic><topic>Radiologi och bildbehandling</topic><topic>Radiology, Nuclear Medicine and Medical Imaging</topic><topic>Research and Analysis Methods</topic><topic>Reviews</topic><topic>Scientific imaging</topic><topic>Software</topic><topic>Spectrometry</topic><topic>Statistical analysis</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bukartas, Antanas</creatorcontrib><creatorcontrib>Wallin, Jonas</creatorcontrib><creatorcontrib>Finck, Robert</creatorcontrib><creatorcontrib>Rääf, Christopher</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bukartas, Antanas</au><au>Wallin, Jonas</au><au>Finck, Robert</au><au>Rääf, Christopher</au><au>Hadizadeh, Mohammadreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian algorithm to estimate position and activity of an orphan gamma source utilizing multiple detectors in a mobile gamma spectrometry system</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-22</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0245440</spage><epage>e0245440</epage><pages>e0245440-e0245440</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To avoid harm to the public and the environment, lost ionizing radiation sources must be found and brought back under the regulatory control as soon as possible. Usually, mobile gamma spectrometry systems are used in such search missions. It is possible to estimate the position and activity of point gamma sources by performing Bayesian inference on the measurement data. The aim of this study was to theoretically investigate the improvements in the Bayesian estimations of the position and activity of a point gamma source due to introduction of data from multiple detectors with angular variations of efficiency. Three detector combinations were tested-a single 123% HPGe detector, single 4l NaI (Tl) detector and a 123% HPGe with 2x4l NaI (Tl) detector combination-with and without angular efficiency variations for each combination resulting in six different variants of the Bayesian algorithm. It was found that introduction of angular efficiency variations of the detectors did improve the accuracy of activity estimation slightly, while introduction of data from additional detectors lowered the signal-to-noise ratio threshold of the system significantly, increasing the stability and accuracy of the estimated source position and activity, for a given signal-to-noise ratio.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33481856</pmid><doi>10.1371/journal.pone.0245440</doi><tpages>e0245440</tpages><orcidid>https://orcid.org/0000-0003-0381-6593</orcidid><orcidid>https://orcid.org/0000-0002-8407-8993</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-01, Vol.16 (1), p.e0245440-e0245440 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2479993860 |
source | DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Atoms & subatomic particles Attenuation coefficients Bayesian analysis Bayesian statistical decision theory Clinical Medicine Computer programs Drafting software Editing Efficiency Energy Engineering and Technology Fluence Funding Gamma rays Incidence angle Ionizing radiation Klinisk medicin Medical and Health Sciences Medicin och hälsovetenskap Methods Photomultiplier tubes Photons Physical Sciences Physics Radiation Radiation detectors Radiation shielding Radiation sources Radiologi och bildbehandling Radiology, Nuclear Medicine and Medical Imaging Research and Analysis Methods Reviews Scientific imaging Software Spectrometry Statistical analysis Velocity |
title | Bayesian algorithm to estimate position and activity of an orphan gamma source utilizing multiple detectors in a mobile gamma spectrometry system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20algorithm%20to%20estimate%20position%20and%20activity%20of%20an%20orphan%20gamma%20source%20utilizing%20multiple%20detectors%20in%20a%20mobile%20gamma%20spectrometry%20system&rft.jtitle=PloS%20one&rft.au=Bukartas,%20Antanas&rft.date=2021-01-22&rft.volume=16&rft.issue=1&rft.spage=e0245440&rft.epage=e0245440&rft.pages=e0245440-e0245440&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0245440&rft_dat=%3Cgale_plos_%3EA649336018%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479993860&rft_id=info:pmid/33481856&rft_galeid=A649336018&rft_doaj_id=oai_doaj_org_article_2de4af1628334b62b59bfb84abc714dd&rfr_iscdi=true |