Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods

Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-01, Vol.16 (1), p.e0245525-e0245525
Hauptverfasser: Liu, Junzhao, Zhang, Dong, Tang, Qiuju, Xu, Hongbin, Huang, Shanheng, Shang, Dan, Liu, Ruxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0245525
container_issue 1
container_start_page e0245525
container_title PloS one
container_volume 16
creator Liu, Junzhao
Zhang, Dong
Tang, Qiuju
Xu, Hongbin
Huang, Shanheng
Shang, Dan
Liu, Ruxue
description Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangji River Basin. The datasets, which contained 19 parameters, were generated during the 2 year (2018-2020) monitoring programme at 14 different sites (3192 observations) along the river. Hierarchical CA was used to divide the twelve months into three periods and the fourteen sampling sites into three groups. Discriminant analysis identified four parameters (CODMn, Cu, As, Se) loading more than 68% correct assignations in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd) to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that were responsible for explaining the data structure of 68% of the total variance of the dataset, allowing grouping of selected parameters based on common characteristics and assessing the incidence of overall change in each group. This study proposes the necessity and practicality of multivariate statistical techniques for evaluating and interpreting large and complex data sets, with a view to obtaining better information about water quality and the design of monitoring networks to effectively manage water resources.
doi_str_mv 10.1371/journal.pone.0245525
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2479993678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649336089</galeid><doaj_id>oai_doaj_org_article_40ac6c6e274b451e923c9b97adea4ca5</doaj_id><sourcerecordid>A649336089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-bca15b2fab3392433263ffe6713d56eb194db3085b06dc1690a8f0c400cb5fa93</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAO-1Idd8zWZyYtQFj8KBcEPfAx3MslulpmkTTIr_fdm3WnpSslDws055957OFX1muAlYQ35sA1T9DAsr4M3S0x5XdP6SXVKJKMLQTF7-uB9Ur1IaYtxzVohnlcnjPGWtC0-rf78hmwiuplgcPkWQUompdH4jMD3KJUe2iDXl4KzTkN2waNgUd4Y9GMzgV9vHfrudkXifLVxHt6jKTm_RuM0ZLeD6Io8SrkQUy78AY0mb0KfXlbPLAzJvJrvs-rX508_V18XV9--XK4urha6liwvOg2k7qiFjjFJOWNUMGuNaAjra2E6InnfMdzWHRa9JkJiaC3WHGPd1RYkO6veHnSvh5DU7FlSlDdSSiaatiAuD4g-wFZdRzdCvFUBnPpXCHGtIJbZB6M4Bi20MLThHa-JkZRp2ckGegNcQ120Ps7dpm40vS62RRiORI9_vNuoddippqWUYVoEzmeBGG4mk7IaXdJmGMCbMO3nbnGxgOOmQN_9B318uxm1hrKA8zaUvnovqi4El4wJ3O5dWj6CKqc3o9MlYNaV-hGBHwg6hpSisfc7Eqz28bwbRu3jqeZ4Ftqbh_7ck-7yyP4C-ebkdw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479993678</pqid></control><display><type>article</type><title>Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Liu, Junzhao ; Zhang, Dong ; Tang, Qiuju ; Xu, Hongbin ; Huang, Shanheng ; Shang, Dan ; Liu, Ruxue</creator><creatorcontrib>Liu, Junzhao ; Zhang, Dong ; Tang, Qiuju ; Xu, Hongbin ; Huang, Shanheng ; Shang, Dan ; Liu, Ruxue</creatorcontrib><description>Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangji River Basin. The datasets, which contained 19 parameters, were generated during the 2 year (2018-2020) monitoring programme at 14 different sites (3192 observations) along the river. Hierarchical CA was used to divide the twelve months into three periods and the fourteen sampling sites into three groups. Discriminant analysis identified four parameters (CODMn, Cu, As, Se) loading more than 68% correct assignations in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd) to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that were responsible for explaining the data structure of 68% of the total variance of the dataset, allowing grouping of selected parameters based on common characteristics and assessing the incidence of overall change in each group. This study proposes the necessity and practicality of multivariate statistical techniques for evaluating and interpreting large and complex data sets, with a view to obtaining better information about water quality and the design of monitoring networks to effectively manage water resources.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0245525</identifier><identifier>PMID: 33481880</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alkylbenzenes ; Ammonia ; Analysis ; Arsenic ; Cadmium ; Chemical oxygen demand ; Chromium ; Copper ; Discriminant analysis ; Dissolved oxygen ; Earth Sciences ; Ecology ; Ecology and Environmental Sciences ; Engineering and Technology ; Environmental aspects ; Environmental monitoring ; Fluorides ; Groundwater ; Groundwater flow ; Groundwater runoff ; Hexavalent chromium ; Hydrocarbons ; Mercury ; Mercury (metal) ; Nitrogen ; Oxygen ; Petroleum hydrocarbons ; Phenols ; Phosphorus ; Physical Sciences ; Pollutants ; Pollution ; Precipitation ; Principal components analysis ; Pulp &amp; paper industry ; Pumping ; Quality assessment ; Quality control ; Quality management ; Research and Analysis Methods ; River flow ; Rivers ; Runoff ; Sampling ; Seasonal variations ; Selenium ; Sewage treatment plants ; Statistical analysis ; Statistical methods ; Sulfonates ; Surface runoff ; Surface water ; Surface water quality ; Tributaries ; Water pollution ; Water quality ; Water quality assessments ; Water quality management ; Water quality monitoring ; Water shortages ; Zinc</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0245525-e0245525</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Liu et al 2021 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-bca15b2fab3392433263ffe6713d56eb194db3085b06dc1690a8f0c400cb5fa93</citedby><cites>FETCH-LOGICAL-c593t-bca15b2fab3392433263ffe6713d56eb194db3085b06dc1690a8f0c400cb5fa93</cites><orcidid>0000-0002-8769-4636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822302/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822302/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33481880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Junzhao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Tang, Qiuju</creatorcontrib><creatorcontrib>Xu, Hongbin</creatorcontrib><creatorcontrib>Huang, Shanheng</creatorcontrib><creatorcontrib>Shang, Dan</creatorcontrib><creatorcontrib>Liu, Ruxue</creatorcontrib><title>Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangji River Basin. The datasets, which contained 19 parameters, were generated during the 2 year (2018-2020) monitoring programme at 14 different sites (3192 observations) along the river. Hierarchical CA was used to divide the twelve months into three periods and the fourteen sampling sites into three groups. Discriminant analysis identified four parameters (CODMn, Cu, As, Se) loading more than 68% correct assignations in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd) to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that were responsible for explaining the data structure of 68% of the total variance of the dataset, allowing grouping of selected parameters based on common characteristics and assessing the incidence of overall change in each group. This study proposes the necessity and practicality of multivariate statistical techniques for evaluating and interpreting large and complex data sets, with a view to obtaining better information about water quality and the design of monitoring networks to effectively manage water resources.</description><subject>Alkylbenzenes</subject><subject>Ammonia</subject><subject>Analysis</subject><subject>Arsenic</subject><subject>Cadmium</subject><subject>Chemical oxygen demand</subject><subject>Chromium</subject><subject>Copper</subject><subject>Discriminant analysis</subject><subject>Dissolved oxygen</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Environmental aspects</subject><subject>Environmental monitoring</subject><subject>Fluorides</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Groundwater runoff</subject><subject>Hexavalent chromium</subject><subject>Hydrocarbons</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Nitrogen</subject><subject>Oxygen</subject><subject>Petroleum hydrocarbons</subject><subject>Phenols</subject><subject>Phosphorus</subject><subject>Physical Sciences</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Precipitation</subject><subject>Principal components analysis</subject><subject>Pulp &amp; paper industry</subject><subject>Pumping</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Quality management</subject><subject>Research and Analysis Methods</subject><subject>River flow</subject><subject>Rivers</subject><subject>Runoff</subject><subject>Sampling</subject><subject>Seasonal variations</subject><subject>Selenium</subject><subject>Sewage treatment plants</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Sulfonates</subject><subject>Surface runoff</subject><subject>Surface water</subject><subject>Surface water quality</subject><subject>Tributaries</subject><subject>Water pollution</subject><subject>Water quality</subject><subject>Water quality assessments</subject><subject>Water quality management</subject><subject>Water quality monitoring</subject><subject>Water shortages</subject><subject>Zinc</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAO-1Idd8zWZyYtQFj8KBcEPfAx3MslulpmkTTIr_fdm3WnpSslDws055957OFX1muAlYQ35sA1T9DAsr4M3S0x5XdP6SXVKJKMLQTF7-uB9Ur1IaYtxzVohnlcnjPGWtC0-rf78hmwiuplgcPkWQUompdH4jMD3KJUe2iDXl4KzTkN2waNgUd4Y9GMzgV9vHfrudkXifLVxHt6jKTm_RuM0ZLeD6Io8SrkQUy78AY0mb0KfXlbPLAzJvJrvs-rX508_V18XV9--XK4urha6liwvOg2k7qiFjjFJOWNUMGuNaAjra2E6InnfMdzWHRa9JkJiaC3WHGPd1RYkO6veHnSvh5DU7FlSlDdSSiaatiAuD4g-wFZdRzdCvFUBnPpXCHGtIJbZB6M4Bi20MLThHa-JkZRp2ckGegNcQ120Ps7dpm40vS62RRiORI9_vNuoddippqWUYVoEzmeBGG4mk7IaXdJmGMCbMO3nbnGxgOOmQN_9B318uxm1hrKA8zaUvnovqi4El4wJ3O5dWj6CKqc3o9MlYNaV-hGBHwg6hpSisfc7Eqz28bwbRu3jqeZ4Ftqbh_7ck-7yyP4C-ebkdw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Junzhao</creator><creator>Zhang, Dong</creator><creator>Tang, Qiuju</creator><creator>Xu, Hongbin</creator><creator>Huang, Shanheng</creator><creator>Shang, Dan</creator><creator>Liu, Ruxue</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8769-4636</orcidid></search><sort><creationdate>20210101</creationdate><title>Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods</title><author>Liu, Junzhao ; Zhang, Dong ; Tang, Qiuju ; Xu, Hongbin ; Huang, Shanheng ; Shang, Dan ; Liu, Ruxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-bca15b2fab3392433263ffe6713d56eb194db3085b06dc1690a8f0c400cb5fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkylbenzenes</topic><topic>Ammonia</topic><topic>Analysis</topic><topic>Arsenic</topic><topic>Cadmium</topic><topic>Chemical oxygen demand</topic><topic>Chromium</topic><topic>Copper</topic><topic>Discriminant analysis</topic><topic>Dissolved oxygen</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Environmental aspects</topic><topic>Environmental monitoring</topic><topic>Fluorides</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Groundwater runoff</topic><topic>Hexavalent chromium</topic><topic>Hydrocarbons</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Nitrogen</topic><topic>Oxygen</topic><topic>Petroleum hydrocarbons</topic><topic>Phenols</topic><topic>Phosphorus</topic><topic>Physical Sciences</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Precipitation</topic><topic>Principal components analysis</topic><topic>Pulp &amp; paper industry</topic><topic>Pumping</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Quality management</topic><topic>Research and Analysis Methods</topic><topic>River flow</topic><topic>Rivers</topic><topic>Runoff</topic><topic>Sampling</topic><topic>Seasonal variations</topic><topic>Selenium</topic><topic>Sewage treatment plants</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Sulfonates</topic><topic>Surface runoff</topic><topic>Surface water</topic><topic>Surface water quality</topic><topic>Tributaries</topic><topic>Water pollution</topic><topic>Water quality</topic><topic>Water quality assessments</topic><topic>Water quality management</topic><topic>Water quality monitoring</topic><topic>Water shortages</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Junzhao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Tang, Qiuju</creatorcontrib><creatorcontrib>Xu, Hongbin</creatorcontrib><creatorcontrib>Huang, Shanheng</creatorcontrib><creatorcontrib>Shang, Dan</creatorcontrib><creatorcontrib>Liu, Ruxue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Junzhao</au><au>Zhang, Dong</au><au>Tang, Qiuju</au><au>Xu, Hongbin</au><au>Huang, Shanheng</au><au>Shang, Dan</au><au>Liu, Ruxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0245525</spage><epage>e0245525</epage><pages>e0245525-e0245525</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangji River Basin. The datasets, which contained 19 parameters, were generated during the 2 year (2018-2020) monitoring programme at 14 different sites (3192 observations) along the river. Hierarchical CA was used to divide the twelve months into three periods and the fourteen sampling sites into three groups. Discriminant analysis identified four parameters (CODMn, Cu, As, Se) loading more than 68% correct assignations in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd) to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that were responsible for explaining the data structure of 68% of the total variance of the dataset, allowing grouping of selected parameters based on common characteristics and assessing the incidence of overall change in each group. This study proposes the necessity and practicality of multivariate statistical techniques for evaluating and interpreting large and complex data sets, with a view to obtaining better information about water quality and the design of monitoring networks to effectively manage water resources.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33481880</pmid><doi>10.1371/journal.pone.0245525</doi><orcidid>https://orcid.org/0000-0002-8769-4636</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-01, Vol.16 (1), p.e0245525-e0245525
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2479993678
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Alkylbenzenes
Ammonia
Analysis
Arsenic
Cadmium
Chemical oxygen demand
Chromium
Copper
Discriminant analysis
Dissolved oxygen
Earth Sciences
Ecology
Ecology and Environmental Sciences
Engineering and Technology
Environmental aspects
Environmental monitoring
Fluorides
Groundwater
Groundwater flow
Groundwater runoff
Hexavalent chromium
Hydrocarbons
Mercury
Mercury (metal)
Nitrogen
Oxygen
Petroleum hydrocarbons
Phenols
Phosphorus
Physical Sciences
Pollutants
Pollution
Precipitation
Principal components analysis
Pulp & paper industry
Pumping
Quality assessment
Quality control
Quality management
Research and Analysis Methods
River flow
Rivers
Runoff
Sampling
Seasonal variations
Selenium
Sewage treatment plants
Statistical analysis
Statistical methods
Sulfonates
Surface runoff
Surface water
Surface water quality
Tributaries
Water pollution
Water quality
Water quality assessments
Water quality management
Water quality monitoring
Water shortages
Zinc
title Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20quality%20assessment%20and%20source%20identification%20of%20the%20Shuangji%20River%20(China)%20using%20multivariate%20statistical%20methods&rft.jtitle=PloS%20one&rft.au=Liu,%20Junzhao&rft.date=2021-01-01&rft.volume=16&rft.issue=1&rft.spage=e0245525&rft.epage=e0245525&rft.pages=e0245525-e0245525&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0245525&rft_dat=%3Cgale_plos_%3EA649336089%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479993678&rft_id=info:pmid/33481880&rft_galeid=A649336089&rft_doaj_id=oai_doaj_org_article_40ac6c6e274b451e923c9b97adea4ca5&rfr_iscdi=true