Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods
Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangj...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-01, Vol.16 (1), p.e0245525-e0245525 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0245525 |
---|---|
container_issue | 1 |
container_start_page | e0245525 |
container_title | PloS one |
container_volume | 16 |
creator | Liu, Junzhao Zhang, Dong Tang, Qiuju Xu, Hongbin Huang, Shanheng Shang, Dan Liu, Ruxue |
description | Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangji River Basin. The datasets, which contained 19 parameters, were generated during the 2 year (2018-2020) monitoring programme at 14 different sites (3192 observations) along the river. Hierarchical CA was used to divide the twelve months into three periods and the fourteen sampling sites into three groups. Discriminant analysis identified four parameters (CODMn, Cu, As, Se) loading more than 68% correct assignations in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd) to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that were responsible for explaining the data structure of 68% of the total variance of the dataset, allowing grouping of selected parameters based on common characteristics and assessing the incidence of overall change in each group. This study proposes the necessity and practicality of multivariate statistical techniques for evaluating and interpreting large and complex data sets, with a view to obtaining better information about water quality and the design of monitoring networks to effectively manage water resources. |
doi_str_mv | 10.1371/journal.pone.0245525 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2479993678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649336089</galeid><doaj_id>oai_doaj_org_article_40ac6c6e274b451e923c9b97adea4ca5</doaj_id><sourcerecordid>A649336089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-bca15b2fab3392433263ffe6713d56eb194db3085b06dc1690a8f0c400cb5fa93</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAO-1Idd8zWZyYtQFj8KBcEPfAx3MslulpmkTTIr_fdm3WnpSslDws055957OFX1muAlYQ35sA1T9DAsr4M3S0x5XdP6SXVKJKMLQTF7-uB9Ur1IaYtxzVohnlcnjPGWtC0-rf78hmwiuplgcPkWQUompdH4jMD3KJUe2iDXl4KzTkN2waNgUd4Y9GMzgV9vHfrudkXifLVxHt6jKTm_RuM0ZLeD6Io8SrkQUy78AY0mb0KfXlbPLAzJvJrvs-rX508_V18XV9--XK4urha6liwvOg2k7qiFjjFJOWNUMGuNaAjra2E6InnfMdzWHRa9JkJiaC3WHGPd1RYkO6veHnSvh5DU7FlSlDdSSiaatiAuD4g-wFZdRzdCvFUBnPpXCHGtIJbZB6M4Bi20MLThHa-JkZRp2ckGegNcQ120Ps7dpm40vS62RRiORI9_vNuoddippqWUYVoEzmeBGG4mk7IaXdJmGMCbMO3nbnGxgOOmQN_9B318uxm1hrKA8zaUvnovqi4El4wJ3O5dWj6CKqc3o9MlYNaV-hGBHwg6hpSisfc7Eqz28bwbRu3jqeZ4Ftqbh_7ck-7yyP4C-ebkdw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479993678</pqid></control><display><type>article</type><title>Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Liu, Junzhao ; Zhang, Dong ; Tang, Qiuju ; Xu, Hongbin ; Huang, Shanheng ; Shang, Dan ; Liu, Ruxue</creator><creatorcontrib>Liu, Junzhao ; Zhang, Dong ; Tang, Qiuju ; Xu, Hongbin ; Huang, Shanheng ; Shang, Dan ; Liu, Ruxue</creatorcontrib><description>Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangji River Basin. The datasets, which contained 19 parameters, were generated during the 2 year (2018-2020) monitoring programme at 14 different sites (3192 observations) along the river. Hierarchical CA was used to divide the twelve months into three periods and the fourteen sampling sites into three groups. Discriminant analysis identified four parameters (CODMn, Cu, As, Se) loading more than 68% correct assignations in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd) to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that were responsible for explaining the data structure of 68% of the total variance of the dataset, allowing grouping of selected parameters based on common characteristics and assessing the incidence of overall change in each group. This study proposes the necessity and practicality of multivariate statistical techniques for evaluating and interpreting large and complex data sets, with a view to obtaining better information about water quality and the design of monitoring networks to effectively manage water resources.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0245525</identifier><identifier>PMID: 33481880</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alkylbenzenes ; Ammonia ; Analysis ; Arsenic ; Cadmium ; Chemical oxygen demand ; Chromium ; Copper ; Discriminant analysis ; Dissolved oxygen ; Earth Sciences ; Ecology ; Ecology and Environmental Sciences ; Engineering and Technology ; Environmental aspects ; Environmental monitoring ; Fluorides ; Groundwater ; Groundwater flow ; Groundwater runoff ; Hexavalent chromium ; Hydrocarbons ; Mercury ; Mercury (metal) ; Nitrogen ; Oxygen ; Petroleum hydrocarbons ; Phenols ; Phosphorus ; Physical Sciences ; Pollutants ; Pollution ; Precipitation ; Principal components analysis ; Pulp & paper industry ; Pumping ; Quality assessment ; Quality control ; Quality management ; Research and Analysis Methods ; River flow ; Rivers ; Runoff ; Sampling ; Seasonal variations ; Selenium ; Sewage treatment plants ; Statistical analysis ; Statistical methods ; Sulfonates ; Surface runoff ; Surface water ; Surface water quality ; Tributaries ; Water pollution ; Water quality ; Water quality assessments ; Water quality management ; Water quality monitoring ; Water shortages ; Zinc</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0245525-e0245525</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Liu et al 2021 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-bca15b2fab3392433263ffe6713d56eb194db3085b06dc1690a8f0c400cb5fa93</citedby><cites>FETCH-LOGICAL-c593t-bca15b2fab3392433263ffe6713d56eb194db3085b06dc1690a8f0c400cb5fa93</cites><orcidid>0000-0002-8769-4636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822302/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822302/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33481880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Junzhao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Tang, Qiuju</creatorcontrib><creatorcontrib>Xu, Hongbin</creatorcontrib><creatorcontrib>Huang, Shanheng</creatorcontrib><creatorcontrib>Shang, Dan</creatorcontrib><creatorcontrib>Liu, Ruxue</creatorcontrib><title>Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangji River Basin. The datasets, which contained 19 parameters, were generated during the 2 year (2018-2020) monitoring programme at 14 different sites (3192 observations) along the river. Hierarchical CA was used to divide the twelve months into three periods and the fourteen sampling sites into three groups. Discriminant analysis identified four parameters (CODMn, Cu, As, Se) loading more than 68% correct assignations in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd) to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that were responsible for explaining the data structure of 68% of the total variance of the dataset, allowing grouping of selected parameters based on common characteristics and assessing the incidence of overall change in each group. This study proposes the necessity and practicality of multivariate statistical techniques for evaluating and interpreting large and complex data sets, with a view to obtaining better information about water quality and the design of monitoring networks to effectively manage water resources.</description><subject>Alkylbenzenes</subject><subject>Ammonia</subject><subject>Analysis</subject><subject>Arsenic</subject><subject>Cadmium</subject><subject>Chemical oxygen demand</subject><subject>Chromium</subject><subject>Copper</subject><subject>Discriminant analysis</subject><subject>Dissolved oxygen</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Environmental aspects</subject><subject>Environmental monitoring</subject><subject>Fluorides</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Groundwater runoff</subject><subject>Hexavalent chromium</subject><subject>Hydrocarbons</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Nitrogen</subject><subject>Oxygen</subject><subject>Petroleum hydrocarbons</subject><subject>Phenols</subject><subject>Phosphorus</subject><subject>Physical Sciences</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Precipitation</subject><subject>Principal components analysis</subject><subject>Pulp & paper industry</subject><subject>Pumping</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Quality management</subject><subject>Research and Analysis Methods</subject><subject>River flow</subject><subject>Rivers</subject><subject>Runoff</subject><subject>Sampling</subject><subject>Seasonal variations</subject><subject>Selenium</subject><subject>Sewage treatment plants</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Sulfonates</subject><subject>Surface runoff</subject><subject>Surface water</subject><subject>Surface water quality</subject><subject>Tributaries</subject><subject>Water pollution</subject><subject>Water quality</subject><subject>Water quality assessments</subject><subject>Water quality management</subject><subject>Water quality monitoring</subject><subject>Water shortages</subject><subject>Zinc</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAO-1Idd8zWZyYtQFj8KBcEPfAx3MslulpmkTTIr_fdm3WnpSslDws055957OFX1muAlYQ35sA1T9DAsr4M3S0x5XdP6SXVKJKMLQTF7-uB9Ur1IaYtxzVohnlcnjPGWtC0-rf78hmwiuplgcPkWQUompdH4jMD3KJUe2iDXl4KzTkN2waNgUd4Y9GMzgV9vHfrudkXifLVxHt6jKTm_RuM0ZLeD6Io8SrkQUy78AY0mb0KfXlbPLAzJvJrvs-rX508_V18XV9--XK4urha6liwvOg2k7qiFjjFJOWNUMGuNaAjra2E6InnfMdzWHRa9JkJiaC3WHGPd1RYkO6veHnSvh5DU7FlSlDdSSiaatiAuD4g-wFZdRzdCvFUBnPpXCHGtIJbZB6M4Bi20MLThHa-JkZRp2ckGegNcQ120Ps7dpm40vS62RRiORI9_vNuoddippqWUYVoEzmeBGG4mk7IaXdJmGMCbMO3nbnGxgOOmQN_9B318uxm1hrKA8zaUvnovqi4El4wJ3O5dWj6CKqc3o9MlYNaV-hGBHwg6hpSisfc7Eqz28bwbRu3jqeZ4Ftqbh_7ck-7yyP4C-ebkdw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Junzhao</creator><creator>Zhang, Dong</creator><creator>Tang, Qiuju</creator><creator>Xu, Hongbin</creator><creator>Huang, Shanheng</creator><creator>Shang, Dan</creator><creator>Liu, Ruxue</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8769-4636</orcidid></search><sort><creationdate>20210101</creationdate><title>Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods</title><author>Liu, Junzhao ; Zhang, Dong ; Tang, Qiuju ; Xu, Hongbin ; Huang, Shanheng ; Shang, Dan ; Liu, Ruxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-bca15b2fab3392433263ffe6713d56eb194db3085b06dc1690a8f0c400cb5fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkylbenzenes</topic><topic>Ammonia</topic><topic>Analysis</topic><topic>Arsenic</topic><topic>Cadmium</topic><topic>Chemical oxygen demand</topic><topic>Chromium</topic><topic>Copper</topic><topic>Discriminant analysis</topic><topic>Dissolved oxygen</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Environmental aspects</topic><topic>Environmental monitoring</topic><topic>Fluorides</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Groundwater runoff</topic><topic>Hexavalent chromium</topic><topic>Hydrocarbons</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Nitrogen</topic><topic>Oxygen</topic><topic>Petroleum hydrocarbons</topic><topic>Phenols</topic><topic>Phosphorus</topic><topic>Physical Sciences</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Precipitation</topic><topic>Principal components analysis</topic><topic>Pulp & paper industry</topic><topic>Pumping</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Quality management</topic><topic>Research and Analysis Methods</topic><topic>River flow</topic><topic>Rivers</topic><topic>Runoff</topic><topic>Sampling</topic><topic>Seasonal variations</topic><topic>Selenium</topic><topic>Sewage treatment plants</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Sulfonates</topic><topic>Surface runoff</topic><topic>Surface water</topic><topic>Surface water quality</topic><topic>Tributaries</topic><topic>Water pollution</topic><topic>Water quality</topic><topic>Water quality assessments</topic><topic>Water quality management</topic><topic>Water quality monitoring</topic><topic>Water shortages</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Junzhao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Tang, Qiuju</creatorcontrib><creatorcontrib>Xu, Hongbin</creatorcontrib><creatorcontrib>Huang, Shanheng</creatorcontrib><creatorcontrib>Shang, Dan</creatorcontrib><creatorcontrib>Liu, Ruxue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Junzhao</au><au>Zhang, Dong</au><au>Tang, Qiuju</au><au>Xu, Hongbin</au><au>Huang, Shanheng</au><au>Shang, Dan</au><au>Liu, Ruxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0245525</spage><epage>e0245525</epage><pages>e0245525-e0245525</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangji River Basin. The datasets, which contained 19 parameters, were generated during the 2 year (2018-2020) monitoring programme at 14 different sites (3192 observations) along the river. Hierarchical CA was used to divide the twelve months into three periods and the fourteen sampling sites into three groups. Discriminant analysis identified four parameters (CODMn, Cu, As, Se) loading more than 68% correct assignations in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd) to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that were responsible for explaining the data structure of 68% of the total variance of the dataset, allowing grouping of selected parameters based on common characteristics and assessing the incidence of overall change in each group. This study proposes the necessity and practicality of multivariate statistical techniques for evaluating and interpreting large and complex data sets, with a view to obtaining better information about water quality and the design of monitoring networks to effectively manage water resources.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33481880</pmid><doi>10.1371/journal.pone.0245525</doi><orcidid>https://orcid.org/0000-0002-8769-4636</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-01, Vol.16 (1), p.e0245525-e0245525 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2479993678 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Alkylbenzenes Ammonia Analysis Arsenic Cadmium Chemical oxygen demand Chromium Copper Discriminant analysis Dissolved oxygen Earth Sciences Ecology Ecology and Environmental Sciences Engineering and Technology Environmental aspects Environmental monitoring Fluorides Groundwater Groundwater flow Groundwater runoff Hexavalent chromium Hydrocarbons Mercury Mercury (metal) Nitrogen Oxygen Petroleum hydrocarbons Phenols Phosphorus Physical Sciences Pollutants Pollution Precipitation Principal components analysis Pulp & paper industry Pumping Quality assessment Quality control Quality management Research and Analysis Methods River flow Rivers Runoff Sampling Seasonal variations Selenium Sewage treatment plants Statistical analysis Statistical methods Sulfonates Surface runoff Surface water Surface water quality Tributaries Water pollution Water quality Water quality assessments Water quality management Water quality monitoring Water shortages Zinc |
title | Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20quality%20assessment%20and%20source%20identification%20of%20the%20Shuangji%20River%20(China)%20using%20multivariate%20statistical%20methods&rft.jtitle=PloS%20one&rft.au=Liu,%20Junzhao&rft.date=2021-01-01&rft.volume=16&rft.issue=1&rft.spage=e0245525&rft.epage=e0245525&rft.pages=e0245525-e0245525&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0245525&rft_dat=%3Cgale_plos_%3EA649336089%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479993678&rft_id=info:pmid/33481880&rft_galeid=A649336089&rft_doaj_id=oai_doaj_org_article_40ac6c6e274b451e923c9b97adea4ca5&rfr_iscdi=true |