Phenotypes to remember: Evolutionary developmental memory capacity and robustness

There is increased awareness of the possibility of developmental memories resulting from evolutionary learning. Genetic regulatory and neural networks can be modelled by analogous formalism raising the important question of productive analogies in principles, processes and performance. We investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-11, Vol.16 (11), p.e1008425-e1008425
Hauptverfasser: Szilágyi, András, Szabó, Péter, Santos, Mauro, Szathmáry, Eörs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008425
container_issue 11
container_start_page e1008425
container_title PLoS computational biology
container_volume 16
creator Szilágyi, András
Szabó, Péter
Santos, Mauro
Szathmáry, Eörs
description There is increased awareness of the possibility of developmental memories resulting from evolutionary learning. Genetic regulatory and neural networks can be modelled by analogous formalism raising the important question of productive analogies in principles, processes and performance. We investigate the formation and persistence of various developmental memories of past phenotypes asking how the number of remembered past phenotypes scales with network size, to what extent memories stored form by Hebbian-like rules, and how robust these developmental "devo-engrams" are against networks perturbations (graceful degradation). The analogy between neural and genetic regulatory networks is not superficial in that it allows knowledge transfer between fields that used to be developed separately from each other. Known examples of spectacular phenotypic radiations could partly be accounted for in such terms.
doi_str_mv 10.1371/journal.pcbi.1008425
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2479463866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643392427</galeid><doaj_id>oai_doaj_org_article_99ee5c2434cb4b6f85b63aad9eb9e883</doaj_id><sourcerecordid>A643392427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-ff43464773d97f1bb58950b28cc5abc37f8e5c83a6dda139262126d1234eaf423</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEomXhHyCIxAUOu8Qex3F6QKqqAitVfHO2bGey9SqJg-2s2H-Pt7utuogL8sHW-JmZd15Nlj0nxYJARd6u3eQH1S1Go-2CFIVgtHyQnZKyhHkFpXh4732SPQlhXRTpWfPH2QkALYEIdpp9_XKNg4vbEUMeXe6xx16jP8svN66bonWD8tu8wQ12buxxiKrLE-JS0KhRGRu3uRqa3Ds9hThgCE-zR63qAj473LPs5_vLHxcf51efPywvzq_mhgPEedsyYJxVFTR11RKtk7Sy0FQYUyptoGoFlkaA4k2jCNSUU0J5QygwVC2jMMte7uuOnQvy4EaQlFU14yA4T8RyTzROreXobZ9mkU5ZeRNwfiWVj9Z0KOsaUzeaJBnNNG9FqTko1dSoaxQCUq13h26T7rExyQmvuqOixz-DvZYrt5FVVYBIU86y14cC3v2aMETZ22Cw69SAbtrp5rxglNzofvUX-u_pFntqpdIAdmhd6mvSabC3xg3Y2hQ_5wySeYzuFLw5SkhMxN9xpaYQ5PL7t_9gPx2zbM8a70Lw2N65Qgq5W9Vb-XK3qvKwqintxX1H75JudxP-AO-b5oQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479463866</pqid></control><display><type>article</type><title>Phenotypes to remember: Evolutionary developmental memory capacity and robustness</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Szilágyi, András ; Szabó, Péter ; Santos, Mauro ; Szathmáry, Eörs</creator><contributor>Newman, Stuart A.</contributor><creatorcontrib>Szilágyi, András ; Szabó, Péter ; Santos, Mauro ; Szathmáry, Eörs ; Newman, Stuart A.</creatorcontrib><description>There is increased awareness of the possibility of developmental memories resulting from evolutionary learning. Genetic regulatory and neural networks can be modelled by analogous formalism raising the important question of productive analogies in principles, processes and performance. We investigate the formation and persistence of various developmental memories of past phenotypes asking how the number of remembered past phenotypes scales with network size, to what extent memories stored form by Hebbian-like rules, and how robust these developmental "devo-engrams" are against networks perturbations (graceful degradation). The analogy between neural and genetic regulatory networks is not superficial in that it allows knowledge transfer between fields that used to be developed separately from each other. Known examples of spectacular phenotypic radiations could partly be accounted for in such terms.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008425</identifier><identifier>PMID: 33253184</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Analysis ; Biological Evolution ; Biology and Life Sciences ; Cichlids ; Computer and Information Sciences ; Developmental biology ; Developmental stages ; Divergence ; Ecological niches ; Embryos ; Gene expression ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Genetic aspects ; Genotype &amp; phenotype ; Genotypes ; Humans ; Lakes ; Memory ; Morphology ; Mutation ; Natural history ; Natural selection ; Neural circuitry ; Neural networks ; Niches ; Ontogeny ; Phenotype ; Phenotypes ; Population ; Radiation ; Technology application</subject><ispartof>PLoS computational biology, 2020-11, Vol.16 (11), p.e1008425-e1008425</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Szilágyi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Szilágyi et al 2020 Szilágyi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-ff43464773d97f1bb58950b28cc5abc37f8e5c83a6dda139262126d1234eaf423</citedby><cites>FETCH-LOGICAL-c633t-ff43464773d97f1bb58950b28cc5abc37f8e5c83a6dda139262126d1234eaf423</cites><orcidid>0000-0002-6894-4652 ; 0000-0002-6478-6570 ; 0000-0001-5227-2997 ; 0000-0002-0521-3094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703877/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703877/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33253184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Newman, Stuart A.</contributor><creatorcontrib>Szilágyi, András</creatorcontrib><creatorcontrib>Szabó, Péter</creatorcontrib><creatorcontrib>Santos, Mauro</creatorcontrib><creatorcontrib>Szathmáry, Eörs</creatorcontrib><title>Phenotypes to remember: Evolutionary developmental memory capacity and robustness</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>There is increased awareness of the possibility of developmental memories resulting from evolutionary learning. Genetic regulatory and neural networks can be modelled by analogous formalism raising the important question of productive analogies in principles, processes and performance. We investigate the formation and persistence of various developmental memories of past phenotypes asking how the number of remembered past phenotypes scales with network size, to what extent memories stored form by Hebbian-like rules, and how robust these developmental "devo-engrams" are against networks perturbations (graceful degradation). The analogy between neural and genetic regulatory networks is not superficial in that it allows knowledge transfer between fields that used to be developed separately from each other. Known examples of spectacular phenotypic radiations could partly be accounted for in such terms.</description><subject>Adaptation</subject><subject>Analysis</subject><subject>Biological Evolution</subject><subject>Biology and Life Sciences</subject><subject>Cichlids</subject><subject>Computer and Information Sciences</subject><subject>Developmental biology</subject><subject>Developmental stages</subject><subject>Divergence</subject><subject>Ecological niches</subject><subject>Embryos</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Genetic aspects</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Humans</subject><subject>Lakes</subject><subject>Memory</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Natural history</subject><subject>Natural selection</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Niches</subject><subject>Ontogeny</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Population</subject><subject>Radiation</subject><subject>Technology application</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEomXhHyCIxAUOu8Qex3F6QKqqAitVfHO2bGey9SqJg-2s2H-Pt7utuogL8sHW-JmZd15Nlj0nxYJARd6u3eQH1S1Go-2CFIVgtHyQnZKyhHkFpXh4732SPQlhXRTpWfPH2QkALYEIdpp9_XKNg4vbEUMeXe6xx16jP8svN66bonWD8tu8wQ12buxxiKrLE-JS0KhRGRu3uRqa3Ds9hThgCE-zR63qAj473LPs5_vLHxcf51efPywvzq_mhgPEedsyYJxVFTR11RKtk7Sy0FQYUyptoGoFlkaA4k2jCNSUU0J5QygwVC2jMMte7uuOnQvy4EaQlFU14yA4T8RyTzROreXobZ9mkU5ZeRNwfiWVj9Z0KOsaUzeaJBnNNG9FqTko1dSoaxQCUq13h26T7rExyQmvuqOixz-DvZYrt5FVVYBIU86y14cC3v2aMETZ22Cw69SAbtrp5rxglNzofvUX-u_pFntqpdIAdmhd6mvSabC3xg3Y2hQ_5wySeYzuFLw5SkhMxN9xpaYQ5PL7t_9gPx2zbM8a70Lw2N65Qgq5W9Vb-XK3qvKwqintxX1H75JudxP-AO-b5oQ</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Szilágyi, András</creator><creator>Szabó, Péter</creator><creator>Santos, Mauro</creator><creator>Szathmáry, Eörs</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6894-4652</orcidid><orcidid>https://orcid.org/0000-0002-6478-6570</orcidid><orcidid>https://orcid.org/0000-0001-5227-2997</orcidid><orcidid>https://orcid.org/0000-0002-0521-3094</orcidid></search><sort><creationdate>20201130</creationdate><title>Phenotypes to remember: Evolutionary developmental memory capacity and robustness</title><author>Szilágyi, András ; Szabó, Péter ; Santos, Mauro ; Szathmáry, Eörs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-ff43464773d97f1bb58950b28cc5abc37f8e5c83a6dda139262126d1234eaf423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Analysis</topic><topic>Biological Evolution</topic><topic>Biology and Life Sciences</topic><topic>Cichlids</topic><topic>Computer and Information Sciences</topic><topic>Developmental biology</topic><topic>Developmental stages</topic><topic>Divergence</topic><topic>Ecological niches</topic><topic>Embryos</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Genetic aspects</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Humans</topic><topic>Lakes</topic><topic>Memory</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Natural history</topic><topic>Natural selection</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Niches</topic><topic>Ontogeny</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Population</topic><topic>Radiation</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szilágyi, András</creatorcontrib><creatorcontrib>Szabó, Péter</creatorcontrib><creatorcontrib>Santos, Mauro</creatorcontrib><creatorcontrib>Szathmáry, Eörs</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szilágyi, András</au><au>Szabó, Péter</au><au>Santos, Mauro</au><au>Szathmáry, Eörs</au><au>Newman, Stuart A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenotypes to remember: Evolutionary developmental memory capacity and robustness</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-11-30</date><risdate>2020</risdate><volume>16</volume><issue>11</issue><spage>e1008425</spage><epage>e1008425</epage><pages>e1008425-e1008425</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>There is increased awareness of the possibility of developmental memories resulting from evolutionary learning. Genetic regulatory and neural networks can be modelled by analogous formalism raising the important question of productive analogies in principles, processes and performance. We investigate the formation and persistence of various developmental memories of past phenotypes asking how the number of remembered past phenotypes scales with network size, to what extent memories stored form by Hebbian-like rules, and how robust these developmental "devo-engrams" are against networks perturbations (graceful degradation). The analogy between neural and genetic regulatory networks is not superficial in that it allows knowledge transfer between fields that used to be developed separately from each other. Known examples of spectacular phenotypic radiations could partly be accounted for in such terms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33253184</pmid><doi>10.1371/journal.pcbi.1008425</doi><orcidid>https://orcid.org/0000-0002-6894-4652</orcidid><orcidid>https://orcid.org/0000-0002-6478-6570</orcidid><orcidid>https://orcid.org/0000-0001-5227-2997</orcidid><orcidid>https://orcid.org/0000-0002-0521-3094</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-11, Vol.16 (11), p.e1008425-e1008425
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2479463866
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adaptation
Analysis
Biological Evolution
Biology and Life Sciences
Cichlids
Computer and Information Sciences
Developmental biology
Developmental stages
Divergence
Ecological niches
Embryos
Gene expression
Gene Expression Regulation, Developmental
Gene Regulatory Networks
Genetic aspects
Genotype & phenotype
Genotypes
Humans
Lakes
Memory
Morphology
Mutation
Natural history
Natural selection
Neural circuitry
Neural networks
Niches
Ontogeny
Phenotype
Phenotypes
Population
Radiation
Technology application
title Phenotypes to remember: Evolutionary developmental memory capacity and robustness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenotypes%20to%20remember:%20Evolutionary%20developmental%20memory%20capacity%20and%20robustness&rft.jtitle=PLoS%20computational%20biology&rft.au=Szil%C3%A1gyi,%20Andr%C3%A1s&rft.date=2020-11-30&rft.volume=16&rft.issue=11&rft.spage=e1008425&rft.epage=e1008425&rft.pages=e1008425-e1008425&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008425&rft_dat=%3Cgale_plos_%3EA643392427%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479463866&rft_id=info:pmid/33253184&rft_galeid=A643392427&rft_doaj_id=oai_doaj_org_article_99ee5c2434cb4b6f85b63aad9eb9e883&rfr_iscdi=true