A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer
There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods,...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2020-12, Vol.16 (12), p.e1009218-e1009218 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009218 |
---|---|
container_issue | 12 |
container_start_page | e1009218 |
container_title | PLoS genetics |
container_volume | 16 |
creator | Ray, Debashree Chatterjee, Nilanjan |
description | There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236). |
doi_str_mv | 10.1371/journal.pgen.1009218 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2479462023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650814924</galeid><doaj_id>oai_doaj_org_article_113e32ff6567473781c015ddc8d27b9e</doaj_id><sourcerecordid>A650814924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-da8133530f99bbaea11867c4431536441815ad08da17e9f5f0a5c1b44a5ba28c3</originalsourceid><addsrcrecordid>eNqVk99vFCEQxzdGY7X6HxglMTH6cCcssMu-mDT1V5PGGq2-EhZm72g4WIFtvb_Df1jOXpue6YOGB8jMZ74DM0xVPSF4TmhLXp-FKXrl5uMC_Jxg3NVE3KkeEM7prGWY3b1x3qsepnSGMeWia-9Xe5TWHWZYPKh-HaAxXEAcJodWkJfBoCFENDqwIccwWo1UybJONqHJG4hIh9UYks2A_OQcWq7HkJew8VsDPtvBQkI-nINDaakiGOSCtqiHfAHg0el6BFSjt1YVSyGVN-hzDCmroniovIb4qLo3KJfg8Xbfr769f3d6-HF2fPLh6PDgeKbbrs4zowShlFM8dF3fK1CEiKbVjFHCacMYEYQrg4VRpIVu4ANWXJOeMcV7VQtN96tnl7qjC0lu65lkzdqONTWuaSGOLgkT1Jkco12puJZBWfnHEOJCqpitdiAJoUDrYWh407KWtoJoTLgxWpi67TsoWm-22aZ-BUaXWkXldkR3Pd4u5SKcy7ZlohZdEXi5FYjhxwQpy5VNGpxTHsK0uXcjGt5h3hb0-V_o7a_bUgtVHmD9UDqu9EZUHjQcC8K6mhVqfgtVloGV1cHDYIt9J-DVTkBhMvzMCzWlJI--fvkP9tO_syffd9kXN9glKJeXKbgp2-DTLsguQV3-YIowXDeEYLmZs6vKyc2cye2clbCnN5t5HXQ1WPQ3tO4jcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479462023</pqid></control><display><type>article</type><title>A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ray, Debashree ; Chatterjee, Nilanjan</creator><contributor>Epstein, Michael P.</contributor><creatorcontrib>Ray, Debashree ; Chatterjee, Nilanjan ; Epstein, Michael P.</creatorcontrib><description>There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236).</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009218</identifier><identifier>PMID: 33290408</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Cardiovascular disease ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Genetic aspects ; Genetic diversity ; Genetic Pleiotropy ; Genome-Wide Association Study - methods ; Genomes ; Genotype & phenotype ; Humans ; Hypotheses ; Male ; Methods ; Models, Genetic ; Phenotypes ; Pleiotropy ; Prostate cancer ; Prostatic Neoplasms - genetics ; Quantitative Trait Loci ; Research and Analysis Methods ; Statistical hypothesis testing ; Statistics ; Type 2 diabetes</subject><ispartof>PLoS genetics, 2020-12, Vol.16 (12), p.e1009218-e1009218</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Ray, Chatterjee. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Ray, Chatterjee 2020 Ray, Chatterjee</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-da8133530f99bbaea11867c4431536441815ad08da17e9f5f0a5c1b44a5ba28c3</citedby><cites>FETCH-LOGICAL-c792t-da8133530f99bbaea11867c4431536441815ad08da17e9f5f0a5c1b44a5ba28c3</cites><orcidid>0000-0002-9060-008X ; 0000-0002-0979-2935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748289/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748289/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33290408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Epstein, Michael P.</contributor><creatorcontrib>Ray, Debashree</creatorcontrib><creatorcontrib>Chatterjee, Nilanjan</creatorcontrib><title>A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236).</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Cardiovascular disease</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Pleiotropy</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Male</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Phenotypes</subject><subject>Pleiotropy</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Quantitative Trait Loci</subject><subject>Research and Analysis Methods</subject><subject>Statistical hypothesis testing</subject><subject>Statistics</subject><subject>Type 2 diabetes</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk99vFCEQxzdGY7X6HxglMTH6cCcssMu-mDT1V5PGGq2-EhZm72g4WIFtvb_Df1jOXpue6YOGB8jMZ74DM0xVPSF4TmhLXp-FKXrl5uMC_Jxg3NVE3KkeEM7prGWY3b1x3qsepnSGMeWia-9Xe5TWHWZYPKh-HaAxXEAcJodWkJfBoCFENDqwIccwWo1UybJONqHJG4hIh9UYks2A_OQcWq7HkJew8VsDPtvBQkI-nINDaakiGOSCtqiHfAHg0el6BFSjt1YVSyGVN-hzDCmroniovIb4qLo3KJfg8Xbfr769f3d6-HF2fPLh6PDgeKbbrs4zowShlFM8dF3fK1CEiKbVjFHCacMYEYQrg4VRpIVu4ANWXJOeMcV7VQtN96tnl7qjC0lu65lkzdqONTWuaSGOLgkT1Jkco12puJZBWfnHEOJCqpitdiAJoUDrYWh407KWtoJoTLgxWpi67TsoWm-22aZ-BUaXWkXldkR3Pd4u5SKcy7ZlohZdEXi5FYjhxwQpy5VNGpxTHsK0uXcjGt5h3hb0-V_o7a_bUgtVHmD9UDqu9EZUHjQcC8K6mhVqfgtVloGV1cHDYIt9J-DVTkBhMvzMCzWlJI--fvkP9tO_syffd9kXN9glKJeXKbgp2-DTLsguQV3-YIowXDeEYLmZs6vKyc2cye2clbCnN5t5HXQ1WPQ3tO4jcA</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>Ray, Debashree</creator><creator>Chatterjee, Nilanjan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9060-008X</orcidid><orcidid>https://orcid.org/0000-0002-0979-2935</orcidid></search><sort><creationdate>20201208</creationdate><title>A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer</title><author>Ray, Debashree ; Chatterjee, Nilanjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-da8133530f99bbaea11867c4431536441815ad08da17e9f5f0a5c1b44a5ba28c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Cardiovascular disease</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Pleiotropy</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Male</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Phenotypes</topic><topic>Pleiotropy</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Quantitative Trait Loci</topic><topic>Research and Analysis Methods</topic><topic>Statistical hypothesis testing</topic><topic>Statistics</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Debashree</creatorcontrib><creatorcontrib>Chatterjee, Nilanjan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Debashree</au><au>Chatterjee, Nilanjan</au><au>Epstein, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2020-12-08</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>e1009218</spage><epage>e1009218</epage><pages>e1009218-e1009218</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33290408</pmid><doi>10.1371/journal.pgen.1009218</doi><orcidid>https://orcid.org/0000-0002-9060-008X</orcidid><orcidid>https://orcid.org/0000-0002-0979-2935</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2020-12, Vol.16 (12), p.e1009218-e1009218 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2479462023 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Biology and Life Sciences Cardiovascular disease Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - genetics Genetic aspects Genetic diversity Genetic Pleiotropy Genome-Wide Association Study - methods Genomes Genotype & phenotype Humans Hypotheses Male Methods Models, Genetic Phenotypes Pleiotropy Prostate cancer Prostatic Neoplasms - genetics Quantitative Trait Loci Research and Analysis Methods Statistical hypothesis testing Statistics Type 2 diabetes |
title | A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20powerful%20method%20for%20pleiotropic%20analysis%20under%20composite%20null%20hypothesis%20identifies%20novel%20shared%20loci%20between%20Type%202%20Diabetes%20and%20Prostate%20Cancer&rft.jtitle=PLoS%20genetics&rft.au=Ray,%20Debashree&rft.date=2020-12-08&rft.volume=16&rft.issue=12&rft.spage=e1009218&rft.epage=e1009218&rft.pages=e1009218-e1009218&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009218&rft_dat=%3Cgale_plos_%3EA650814924%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479462023&rft_id=info:pmid/33290408&rft_galeid=A650814924&rft_doaj_id=oai_doaj_org_article_113e32ff6567473781c015ddc8d27b9e&rfr_iscdi=true |