A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer

There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2020-12, Vol.16 (12), p.e1009218-e1009218
Hauptverfasser: Ray, Debashree, Chatterjee, Nilanjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009218
container_issue 12
container_start_page e1009218
container_title PLoS genetics
container_volume 16
creator Ray, Debashree
Chatterjee, Nilanjan
description There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236).
doi_str_mv 10.1371/journal.pgen.1009218
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2479462023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650814924</galeid><doaj_id>oai_doaj_org_article_113e32ff6567473781c015ddc8d27b9e</doaj_id><sourcerecordid>A650814924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-da8133530f99bbaea11867c4431536441815ad08da17e9f5f0a5c1b44a5ba28c3</originalsourceid><addsrcrecordid>eNqVk99vFCEQxzdGY7X6HxglMTH6cCcssMu-mDT1V5PGGq2-EhZm72g4WIFtvb_Df1jOXpue6YOGB8jMZ74DM0xVPSF4TmhLXp-FKXrl5uMC_Jxg3NVE3KkeEM7prGWY3b1x3qsepnSGMeWia-9Xe5TWHWZYPKh-HaAxXEAcJodWkJfBoCFENDqwIccwWo1UybJONqHJG4hIh9UYks2A_OQcWq7HkJew8VsDPtvBQkI-nINDaakiGOSCtqiHfAHg0el6BFSjt1YVSyGVN-hzDCmroniovIb4qLo3KJfg8Xbfr769f3d6-HF2fPLh6PDgeKbbrs4zowShlFM8dF3fK1CEiKbVjFHCacMYEYQrg4VRpIVu4ANWXJOeMcV7VQtN96tnl7qjC0lu65lkzdqONTWuaSGOLgkT1Jkco12puJZBWfnHEOJCqpitdiAJoUDrYWh407KWtoJoTLgxWpi67TsoWm-22aZ-BUaXWkXldkR3Pd4u5SKcy7ZlohZdEXi5FYjhxwQpy5VNGpxTHsK0uXcjGt5h3hb0-V_o7a_bUgtVHmD9UDqu9EZUHjQcC8K6mhVqfgtVloGV1cHDYIt9J-DVTkBhMvzMCzWlJI--fvkP9tO_syffd9kXN9glKJeXKbgp2-DTLsguQV3-YIowXDeEYLmZs6vKyc2cye2clbCnN5t5HXQ1WPQ3tO4jcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479462023</pqid></control><display><type>article</type><title>A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ray, Debashree ; Chatterjee, Nilanjan</creator><contributor>Epstein, Michael P.</contributor><creatorcontrib>Ray, Debashree ; Chatterjee, Nilanjan ; Epstein, Michael P.</creatorcontrib><description>There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236).</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009218</identifier><identifier>PMID: 33290408</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Cardiovascular disease ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Genetic aspects ; Genetic diversity ; Genetic Pleiotropy ; Genome-Wide Association Study - methods ; Genomes ; Genotype &amp; phenotype ; Humans ; Hypotheses ; Male ; Methods ; Models, Genetic ; Phenotypes ; Pleiotropy ; Prostate cancer ; Prostatic Neoplasms - genetics ; Quantitative Trait Loci ; Research and Analysis Methods ; Statistical hypothesis testing ; Statistics ; Type 2 diabetes</subject><ispartof>PLoS genetics, 2020-12, Vol.16 (12), p.e1009218-e1009218</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Ray, Chatterjee. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Ray, Chatterjee 2020 Ray, Chatterjee</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-da8133530f99bbaea11867c4431536441815ad08da17e9f5f0a5c1b44a5ba28c3</citedby><cites>FETCH-LOGICAL-c792t-da8133530f99bbaea11867c4431536441815ad08da17e9f5f0a5c1b44a5ba28c3</cites><orcidid>0000-0002-9060-008X ; 0000-0002-0979-2935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748289/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748289/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33290408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Epstein, Michael P.</contributor><creatorcontrib>Ray, Debashree</creatorcontrib><creatorcontrib>Chatterjee, Nilanjan</creatorcontrib><title>A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236).</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Cardiovascular disease</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Pleiotropy</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Male</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Phenotypes</subject><subject>Pleiotropy</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Quantitative Trait Loci</subject><subject>Research and Analysis Methods</subject><subject>Statistical hypothesis testing</subject><subject>Statistics</subject><subject>Type 2 diabetes</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk99vFCEQxzdGY7X6HxglMTH6cCcssMu-mDT1V5PGGq2-EhZm72g4WIFtvb_Df1jOXpue6YOGB8jMZ74DM0xVPSF4TmhLXp-FKXrl5uMC_Jxg3NVE3KkeEM7prGWY3b1x3qsepnSGMeWia-9Xe5TWHWZYPKh-HaAxXEAcJodWkJfBoCFENDqwIccwWo1UybJONqHJG4hIh9UYks2A_OQcWq7HkJew8VsDPtvBQkI-nINDaakiGOSCtqiHfAHg0el6BFSjt1YVSyGVN-hzDCmroniovIb4qLo3KJfg8Xbfr769f3d6-HF2fPLh6PDgeKbbrs4zowShlFM8dF3fK1CEiKbVjFHCacMYEYQrg4VRpIVu4ANWXJOeMcV7VQtN96tnl7qjC0lu65lkzdqONTWuaSGOLgkT1Jkco12puJZBWfnHEOJCqpitdiAJoUDrYWh407KWtoJoTLgxWpi67TsoWm-22aZ-BUaXWkXldkR3Pd4u5SKcy7ZlohZdEXi5FYjhxwQpy5VNGpxTHsK0uXcjGt5h3hb0-V_o7a_bUgtVHmD9UDqu9EZUHjQcC8K6mhVqfgtVloGV1cHDYIt9J-DVTkBhMvzMCzWlJI--fvkP9tO_syffd9kXN9glKJeXKbgp2-DTLsguQV3-YIowXDeEYLmZs6vKyc2cye2clbCnN5t5HXQ1WPQ3tO4jcA</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>Ray, Debashree</creator><creator>Chatterjee, Nilanjan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9060-008X</orcidid><orcidid>https://orcid.org/0000-0002-0979-2935</orcidid></search><sort><creationdate>20201208</creationdate><title>A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer</title><author>Ray, Debashree ; Chatterjee, Nilanjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-da8133530f99bbaea11867c4431536441815ad08da17e9f5f0a5c1b44a5ba28c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Cardiovascular disease</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Pleiotropy</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Male</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Phenotypes</topic><topic>Pleiotropy</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Quantitative Trait Loci</topic><topic>Research and Analysis Methods</topic><topic>Statistical hypothesis testing</topic><topic>Statistics</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Debashree</creatorcontrib><creatorcontrib>Chatterjee, Nilanjan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Debashree</au><au>Chatterjee, Nilanjan</au><au>Epstein, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2020-12-08</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>e1009218</spage><epage>e1009218</epage><pages>e1009218-e1009218</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33290408</pmid><doi>10.1371/journal.pgen.1009218</doi><orcidid>https://orcid.org/0000-0002-9060-008X</orcidid><orcidid>https://orcid.org/0000-0002-0979-2935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2020-12, Vol.16 (12), p.e1009218-e1009218
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2479462023
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Biology and Life Sciences
Cardiovascular disease
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - genetics
Genetic aspects
Genetic diversity
Genetic Pleiotropy
Genome-Wide Association Study - methods
Genomes
Genotype & phenotype
Humans
Hypotheses
Male
Methods
Models, Genetic
Phenotypes
Pleiotropy
Prostate cancer
Prostatic Neoplasms - genetics
Quantitative Trait Loci
Research and Analysis Methods
Statistical hypothesis testing
Statistics
Type 2 diabetes
title A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20powerful%20method%20for%20pleiotropic%20analysis%20under%20composite%20null%20hypothesis%20identifies%20novel%20shared%20loci%20between%20Type%202%20Diabetes%20and%20Prostate%20Cancer&rft.jtitle=PLoS%20genetics&rft.au=Ray,%20Debashree&rft.date=2020-12-08&rft.volume=16&rft.issue=12&rft.spage=e1009218&rft.epage=e1009218&rft.pages=e1009218-e1009218&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009218&rft_dat=%3Cgale_plos_%3EA650814924%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479462023&rft_id=info:pmid/33290408&rft_galeid=A650814924&rft_doaj_id=oai_doaj_org_article_113e32ff6567473781c015ddc8d27b9e&rfr_iscdi=true