The genomic landscape of metastasis in treatment-naïve breast cancer models
Metastasis remains the principle cause of mortality for breast cancer and presents a critical challenge because secondary lesions are often refractory to conventional treatments. While specific genetic alterations are tightly linked to primary tumor development and progression, the role of genetic a...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2020-05, Vol.16 (5), p.e1008743 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e1008743 |
container_title | PLoS genetics |
container_volume | 16 |
creator | Ross, Christina Szczepanek, Karol Lee, Maxwell Yang, Howard Qiu, Tinghu Sanford, Jack D Hunter, Kent |
description | Metastasis remains the principle cause of mortality for breast cancer and presents a critical challenge because secondary lesions are often refractory to conventional treatments. While specific genetic alterations are tightly linked to primary tumor development and progression, the role of genetic alteration in the metastatic process is not well-understood. The theory of tumor evolution postulated by Peter Nowell in 1976 has yet to be proven in the context of metastasis. Therefore, in order to investigate how somatic evolution contributes to breast cancer metastasis, we performed exome, whole genome, and RNA sequencing of matched metastatic and primary tumors from pre-clinical mouse models of breast cancer. Here we show that in a treatment-naïve setting, recurrent single nucleotide variants and copy number variation, but not gene fusion events, play key metastasis-driving roles in breast cancer. For instance, we identified recurrent mutations in Kras, a known driver of colorectal and lung tumorigenesis that has not been previously implicated in breast cancer metastasis. However, in a set of in vivo proof-of-concept experiments we show that the Kras G12D mutation is sufficient to significantly promote metastasis using three syngeneic allograft models. The work herein confirms the existence of metastasis-driving mutations and presents a novel framework to identify actionable metastasis-targeted therapies. |
doi_str_mv | 10.1371/journal.pgen.1008743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2479453560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b2d26b3fe05a4ef5a6e2ca77b9382b64</doaj_id><sourcerecordid>2408201893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-15769268248497e851f6f131943c2a452258f061a03fa064cc5434327e73423f3</originalsourceid><addsrcrecordid>eNptUttq3DAQNaWlSdP-QWkFeemLt7pLfimU0EtgoS_psxjLo40X29pK3kC-qh-RH6u264SkFAQSo3POzBxOVb1ldMWEYR-3cZ8mGFa7DU4rRqk1UjyrTplSojaSyueP3ifVq5y3lAplG_OyOhFcamE5P63WV9dIikIce08GmLrsYYckBjLiDLmcPpN-InNCmEec5nqCu983SNpSyDPxMHlMZIwdDvl19SLAkPHNcp9VP79-ubr4Xq9_fLu8-LyuveJ6rpkyuuHacmllY9AqFnRggjVSeA5Sca5soJoBFQGolt4rKaTgBo2QXARxVr0_6u6GmN1iRHZcmkYqoTQtiMsjoouwdbvUj5BuXYTe_S3EtHGQ5t4P6Frecd2KgFSBxKBAI_dgTNsUh1oti9anpdu-HbHzxYQEwxPRpz9Tf-028cYZbrk2qgh8WARS_LXHPLuxzx6HYjfG_WFuajllthEFev4P9P_bySPKp5hzwvAwDKPuEI57ljuEwy3hKLR3jxd5IN2nQfwB2dq2-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479453560</pqid></control><display><type>article</type><title>The genomic landscape of metastasis in treatment-naïve breast cancer models</title><source>MEDLINE</source><source>Directory of Open Access Journals - May need to register for free articles</source><source>Public Library of Science (PLoS)(OpenAccess)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Ross, Christina ; Szczepanek, Karol ; Lee, Maxwell ; Yang, Howard ; Qiu, Tinghu ; Sanford, Jack D ; Hunter, Kent</creator><contributor>Polyak, Kornelia</contributor><creatorcontrib>Ross, Christina ; Szczepanek, Karol ; Lee, Maxwell ; Yang, Howard ; Qiu, Tinghu ; Sanford, Jack D ; Hunter, Kent ; Polyak, Kornelia</creatorcontrib><description>Metastasis remains the principle cause of mortality for breast cancer and presents a critical challenge because secondary lesions are often refractory to conventional treatments. While specific genetic alterations are tightly linked to primary tumor development and progression, the role of genetic alteration in the metastatic process is not well-understood. The theory of tumor evolution postulated by Peter Nowell in 1976 has yet to be proven in the context of metastasis. Therefore, in order to investigate how somatic evolution contributes to breast cancer metastasis, we performed exome, whole genome, and RNA sequencing of matched metastatic and primary tumors from pre-clinical mouse models of breast cancer. Here we show that in a treatment-naïve setting, recurrent single nucleotide variants and copy number variation, but not gene fusion events, play key metastasis-driving roles in breast cancer. For instance, we identified recurrent mutations in Kras, a known driver of colorectal and lung tumorigenesis that has not been previously implicated in breast cancer metastasis. However, in a set of in vivo proof-of-concept experiments we show that the Kras G12D mutation is sufficient to significantly promote metastasis using three syngeneic allograft models. The work herein confirms the existence of metastasis-driving mutations and presents a novel framework to identify actionable metastasis-targeted therapies.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008743</identifier><identifier>PMID: 32463822</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amino acids ; Animal models ; Animals ; Biology and Life Sciences ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; Cancer therapies ; Cells, Cultured ; Clonal Evolution - genetics ; Copy number ; Disease Models, Animal ; Disease Progression ; DNA Mutational Analysis - methods ; Exome Sequencing ; Extravasation ; Female ; Gene expression ; Gene fusion ; Genetic engineering ; Genomics - methods ; HEK293 Cells ; Heterografts ; High-Throughput Nucleotide Sequencing ; Humans ; Hypotheses ; Medicine and Health Sciences ; Metastases ; Metastasis ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Nude ; Mice, Transgenic ; Models, Biological ; Mutation ; Neoplasm Metastasis ; Patients ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; Tumors</subject><ispartof>PLoS genetics, 2020-05, Vol.16 (5), p.e1008743</ispartof><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-15769268248497e851f6f131943c2a452258f061a03fa064cc5434327e73423f3</citedby><cites>FETCH-LOGICAL-c526t-15769268248497e851f6f131943c2a452258f061a03fa064cc5434327e73423f3</cites><orcidid>0000-0001-6934-8505 ; 0000-0001-5963-8808 ; 0000-0002-9291-631X ; 0000-0001-6054-9685 ; 0000-0003-4941-0249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282675/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282675/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32463822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Polyak, Kornelia</contributor><creatorcontrib>Ross, Christina</creatorcontrib><creatorcontrib>Szczepanek, Karol</creatorcontrib><creatorcontrib>Lee, Maxwell</creatorcontrib><creatorcontrib>Yang, Howard</creatorcontrib><creatorcontrib>Qiu, Tinghu</creatorcontrib><creatorcontrib>Sanford, Jack D</creatorcontrib><creatorcontrib>Hunter, Kent</creatorcontrib><title>The genomic landscape of metastasis in treatment-naïve breast cancer models</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Metastasis remains the principle cause of mortality for breast cancer and presents a critical challenge because secondary lesions are often refractory to conventional treatments. While specific genetic alterations are tightly linked to primary tumor development and progression, the role of genetic alteration in the metastatic process is not well-understood. The theory of tumor evolution postulated by Peter Nowell in 1976 has yet to be proven in the context of metastasis. Therefore, in order to investigate how somatic evolution contributes to breast cancer metastasis, we performed exome, whole genome, and RNA sequencing of matched metastatic and primary tumors from pre-clinical mouse models of breast cancer. Here we show that in a treatment-naïve setting, recurrent single nucleotide variants and copy number variation, but not gene fusion events, play key metastasis-driving roles in breast cancer. For instance, we identified recurrent mutations in Kras, a known driver of colorectal and lung tumorigenesis that has not been previously implicated in breast cancer metastasis. However, in a set of in vivo proof-of-concept experiments we show that the Kras G12D mutation is sufficient to significantly promote metastasis using three syngeneic allograft models. The work herein confirms the existence of metastasis-driving mutations and presents a novel framework to identify actionable metastasis-targeted therapies.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer therapies</subject><subject>Cells, Cultured</subject><subject>Clonal Evolution - genetics</subject><subject>Copy number</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>DNA Mutational Analysis - methods</subject><subject>Exome Sequencing</subject><subject>Extravasation</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene fusion</subject><subject>Genetic engineering</subject><subject>Genomics - methods</subject><subject>HEK293 Cells</subject><subject>Heterografts</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Medicine and Health Sciences</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Nude</subject><subject>Mice, Transgenic</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Neoplasm Metastasis</subject><subject>Patients</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Tumors</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUttq3DAQNaWlSdP-QWkFeemLt7pLfimU0EtgoS_psxjLo40X29pK3kC-qh-RH6u264SkFAQSo3POzBxOVb1ldMWEYR-3cZ8mGFa7DU4rRqk1UjyrTplSojaSyueP3ifVq5y3lAplG_OyOhFcamE5P63WV9dIikIce08GmLrsYYckBjLiDLmcPpN-InNCmEec5nqCu983SNpSyDPxMHlMZIwdDvl19SLAkPHNcp9VP79-ubr4Xq9_fLu8-LyuveJ6rpkyuuHacmllY9AqFnRggjVSeA5Sca5soJoBFQGolt4rKaTgBo2QXARxVr0_6u6GmN1iRHZcmkYqoTQtiMsjoouwdbvUj5BuXYTe_S3EtHGQ5t4P6Frecd2KgFSBxKBAI_dgTNsUh1oti9anpdu-HbHzxYQEwxPRpz9Tf-028cYZbrk2qgh8WARS_LXHPLuxzx6HYjfG_WFuajllthEFev4P9P_bySPKp5hzwvAwDKPuEI57ljuEwy3hKLR3jxd5IN2nQfwB2dq2-Q</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ross, Christina</creator><creator>Szczepanek, Karol</creator><creator>Lee, Maxwell</creator><creator>Yang, Howard</creator><creator>Qiu, Tinghu</creator><creator>Sanford, Jack D</creator><creator>Hunter, Kent</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6934-8505</orcidid><orcidid>https://orcid.org/0000-0001-5963-8808</orcidid><orcidid>https://orcid.org/0000-0002-9291-631X</orcidid><orcidid>https://orcid.org/0000-0001-6054-9685</orcidid><orcidid>https://orcid.org/0000-0003-4941-0249</orcidid></search><sort><creationdate>20200501</creationdate><title>The genomic landscape of metastasis in treatment-naïve breast cancer models</title><author>Ross, Christina ; Szczepanek, Karol ; Lee, Maxwell ; Yang, Howard ; Qiu, Tinghu ; Sanford, Jack D ; Hunter, Kent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-15769268248497e851f6f131943c2a452258f061a03fa064cc5434327e73423f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer therapies</topic><topic>Cells, Cultured</topic><topic>Clonal Evolution - genetics</topic><topic>Copy number</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>DNA Mutational Analysis - methods</topic><topic>Exome Sequencing</topic><topic>Extravasation</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene fusion</topic><topic>Genetic engineering</topic><topic>Genomics - methods</topic><topic>HEK293 Cells</topic><topic>Heterografts</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Medicine and Health Sciences</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Nude</topic><topic>Mice, Transgenic</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Neoplasm Metastasis</topic><topic>Patients</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Christina</creatorcontrib><creatorcontrib>Szczepanek, Karol</creatorcontrib><creatorcontrib>Lee, Maxwell</creatorcontrib><creatorcontrib>Yang, Howard</creatorcontrib><creatorcontrib>Qiu, Tinghu</creatorcontrib><creatorcontrib>Sanford, Jack D</creatorcontrib><creatorcontrib>Hunter, Kent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Christina</au><au>Szczepanek, Karol</au><au>Lee, Maxwell</au><au>Yang, Howard</au><au>Qiu, Tinghu</au><au>Sanford, Jack D</au><au>Hunter, Kent</au><au>Polyak, Kornelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The genomic landscape of metastasis in treatment-naïve breast cancer models</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>e1008743</spage><pages>e1008743-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Metastasis remains the principle cause of mortality for breast cancer and presents a critical challenge because secondary lesions are often refractory to conventional treatments. While specific genetic alterations are tightly linked to primary tumor development and progression, the role of genetic alteration in the metastatic process is not well-understood. The theory of tumor evolution postulated by Peter Nowell in 1976 has yet to be proven in the context of metastasis. Therefore, in order to investigate how somatic evolution contributes to breast cancer metastasis, we performed exome, whole genome, and RNA sequencing of matched metastatic and primary tumors from pre-clinical mouse models of breast cancer. Here we show that in a treatment-naïve setting, recurrent single nucleotide variants and copy number variation, but not gene fusion events, play key metastasis-driving roles in breast cancer. For instance, we identified recurrent mutations in Kras, a known driver of colorectal and lung tumorigenesis that has not been previously implicated in breast cancer metastasis. However, in a set of in vivo proof-of-concept experiments we show that the Kras G12D mutation is sufficient to significantly promote metastasis using three syngeneic allograft models. The work herein confirms the existence of metastasis-driving mutations and presents a novel framework to identify actionable metastasis-targeted therapies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32463822</pmid><doi>10.1371/journal.pgen.1008743</doi><orcidid>https://orcid.org/0000-0001-6934-8505</orcidid><orcidid>https://orcid.org/0000-0001-5963-8808</orcidid><orcidid>https://orcid.org/0000-0002-9291-631X</orcidid><orcidid>https://orcid.org/0000-0001-6054-9685</orcidid><orcidid>https://orcid.org/0000-0003-4941-0249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2020-05, Vol.16 (5), p.e1008743 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2479453560 |
source | MEDLINE; Directory of Open Access Journals - May need to register for free articles; Public Library of Science (PLoS)(OpenAccess); PubMed Central; EZB Electronic Journals Library |
subjects | Algorithms Amino acids Animal models Animals Biology and Life Sciences Breast cancer Breast Neoplasms - genetics Breast Neoplasms - pathology Cancer therapies Cells, Cultured Clonal Evolution - genetics Copy number Disease Models, Animal Disease Progression DNA Mutational Analysis - methods Exome Sequencing Extravasation Female Gene expression Gene fusion Genetic engineering Genomics - methods HEK293 Cells Heterografts High-Throughput Nucleotide Sequencing Humans Hypotheses Medicine and Health Sciences Metastases Metastasis Mice Mice, Inbred BALB C Mice, Inbred C57BL Mice, Nude Mice, Transgenic Models, Biological Mutation Neoplasm Metastasis Patients Research and Analysis Methods Ribonucleic acid RNA Tumors |
title | The genomic landscape of metastasis in treatment-naïve breast cancer models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20genomic%20landscape%20of%20metastasis%20in%20treatment-na%C3%AFve%20breast%20cancer%20models&rft.jtitle=PLoS%20genetics&rft.au=Ross,%20Christina&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=e1008743&rft.pages=e1008743-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008743&rft_dat=%3Cproquest_plos_%3E2408201893%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479453560&rft_id=info:pmid/32463822&rft_doaj_id=oai_doaj_org_article_b2d26b3fe05a4ef5a6e2ca77b9382b64&rfr_iscdi=true |