Generalizable brain network markers of major depressive disorder across multiple imaging sites

Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2020-12, Vol.18 (12), p.e3000966-e3000966
Hauptverfasser: Yamashita, Ayumu, Sakai, Yuki, Yamada, Takashi, Yahata, Noriaki, Kunimatsu, Akira, Okada, Naohiro, Itahashi, Takashi, Hashimoto, Ryuichiro, Mizuta, Hiroto, Ichikawa, Naho, Takamura, Masahiro, Okada, Go, Yamagata, Hirotaka, Harada, Kenichiro, Matsuo, Koji, Tanaka, Saori C, Kawato, Mitsuo, Kasai, Kiyoto, Kato, Nobumasa, Takahashi, Hidehiko, Okamoto, Yasumasa, Yamashita, Okito, Imamizu, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3000966
container_issue 12
container_start_page e3000966
container_title PLoS biology
container_volume 18
creator Yamashita, Ayumu
Sakai, Yuki
Yamada, Takashi
Yahata, Noriaki
Kunimatsu, Akira
Okada, Naohiro
Itahashi, Takashi
Hashimoto, Ryuichiro
Mizuta, Hiroto
Ichikawa, Naho
Takamura, Masahiro
Okada, Go
Yamagata, Hirotaka
Harada, Kenichiro
Matsuo, Koji
Tanaka, Saori C
Kawato, Mitsuo
Kasai, Kiyoto
Kato, Nobumasa
Takahashi, Hidehiko
Okamoto, Yasumasa
Yamashita, Okito
Imamizu, Hiroshi
description Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability.
doi_str_mv 10.1371/journal.pbio.3000966
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2479139233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650814852</galeid><doaj_id>oai_doaj_org_article_7b8a8c42f8774a448d2a96431c22d082</doaj_id><sourcerecordid>A650814852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c856t-bbd5da67a6bafa82b23d72220b9cd2f55d4fa64e981e0c1db03011d1c7a62ab93</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBE4gKHXfyRxM6lUlVBWamiEl9HrLE9Cd4m8WIn5ePX423Tqot6APlgy37edzxjT5Y9pWRJuaCv134KA3TLjXZ-yQkhdVXdy_ZpWZQLIWV5_9Z6L3sU45oQxmomH2Z7nDNZiFrsZ19PcMAAnfsNusNcB3BDPuD4w4fzvIdwjiHmvknLtQ-5xU3AGN0F5tZFHyyGHEzwMeb91I1ukyxcD60b2jy6EePj7EEDXcQn83yQfX775tPxu8Xp2cnq-Oh0YWRZjQutbWmhElBpaEAyzbgVjDGia2NZU5a2aKAqsJYUiaFWE04otdQkBQNd84Ps-ZXvpvNRzaWJiqUkKa8Z54lYXRHWw1ptQrpm-KU8OHW54UOrIIzOdKiEliBNwRopRAFFIS2Duio4NYxZIlnyOpyjTbpHa3AYUwl3THdPBvdNtf5CCcEoLWQyeDkbBP99wjiq3kWDXQcD-ml770pyLkS1jfXiL_Tu7GaqhZSAGxqf4pqtqTqqSiJT0HLrtbyDSsNi74wfsHFpf0fwakeQmBF_ji1MMarVxw__wb7_d_bsyy5bXLGX_yxgc1NnStS2E64LoradoOZOSLJnt9_oRnT99fkfql8Edg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479139233</pqid></control><display><type>article</type><title>Generalizable brain network markers of major depressive disorder across multiple imaging sites</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yamashita, Ayumu ; Sakai, Yuki ; Yamada, Takashi ; Yahata, Noriaki ; Kunimatsu, Akira ; Okada, Naohiro ; Itahashi, Takashi ; Hashimoto, Ryuichiro ; Mizuta, Hiroto ; Ichikawa, Naho ; Takamura, Masahiro ; Okada, Go ; Yamagata, Hirotaka ; Harada, Kenichiro ; Matsuo, Koji ; Tanaka, Saori C ; Kawato, Mitsuo ; Kasai, Kiyoto ; Kato, Nobumasa ; Takahashi, Hidehiko ; Okamoto, Yasumasa ; Yamashita, Okito ; Imamizu, Hiroshi</creator><contributor>Wager, Tor D.</contributor><creatorcontrib>Yamashita, Ayumu ; Sakai, Yuki ; Yamada, Takashi ; Yahata, Noriaki ; Kunimatsu, Akira ; Okada, Naohiro ; Itahashi, Takashi ; Hashimoto, Ryuichiro ; Mizuta, Hiroto ; Ichikawa, Naho ; Takamura, Masahiro ; Okada, Go ; Yamagata, Hirotaka ; Harada, Kenichiro ; Matsuo, Koji ; Tanaka, Saori C ; Kawato, Mitsuo ; Kasai, Kiyoto ; Kato, Nobumasa ; Takahashi, Hidehiko ; Okamoto, Yasumasa ; Yamashita, Okito ; Imamizu, Hiroshi ; Wager, Tor D.</creatorcontrib><description>Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000966</identifier><identifier>PMID: 33284797</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Bias ; Biological markers ; Biology and Life Sciences ; Brain - physiopathology ; Brain mapping ; Brain Mapping - methods ; Brain research ; Cognitive ability ; Computer and Information Sciences ; Databases, Factual ; Datasets ; Depressive Disorder, Major - diagnostic imaging ; Depressive Disorder, Major - metabolism ; Depressive Disorder, Major - physiopathology ; Diagnosis ; Female ; Functional magnetic resonance imaging ; Genetic aspects ; Health aspects ; Humans ; Identification and classification ; Innovations ; Learning algorithms ; Machine Learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Major depressive disorder ; Male ; Medicine and Health Sciences ; Mental depression ; Mental disorders ; Methods ; Middle Aged ; Nerve Net - physiology ; Neural circuitry ; Neural Pathways ; Neuroimaging ; Noise ; Physical Sciences ; Physiological aspects ; Protocol (computers) ; Psychiatric disability evaluation ; Reproducibility of Results ; Research and Analysis Methods ; Rest - physiology ; Sampling ; Scanners ; Technology application ; Testing</subject><ispartof>PLoS biology, 2020-12, Vol.18 (12), p.e3000966-e3000966</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Yamashita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Yamashita et al 2020 Yamashita et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c856t-bbd5da67a6bafa82b23d72220b9cd2f55d4fa64e981e0c1db03011d1c7a62ab93</citedby><cites>FETCH-LOGICAL-c856t-bbd5da67a6bafa82b23d72220b9cd2f55d4fa64e981e0c1db03011d1c7a62ab93</cites><orcidid>0000-0002-9661-3412 ; 0000-0002-2002-5526 ; 0000-0003-1024-0051 ; 0000-0002-6039-3657 ; 0000-0003-3664-947X ; 0000-0001-9742-152X ; 0000-0003-3825-2919 ; 0000-0001-8185-1197 ; 0000-0002-7001-5051 ; 0000-0003-2475-8548 ; 0000-0002-4443-4535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721148/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721148/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33284797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wager, Tor D.</contributor><creatorcontrib>Yamashita, Ayumu</creatorcontrib><creatorcontrib>Sakai, Yuki</creatorcontrib><creatorcontrib>Yamada, Takashi</creatorcontrib><creatorcontrib>Yahata, Noriaki</creatorcontrib><creatorcontrib>Kunimatsu, Akira</creatorcontrib><creatorcontrib>Okada, Naohiro</creatorcontrib><creatorcontrib>Itahashi, Takashi</creatorcontrib><creatorcontrib>Hashimoto, Ryuichiro</creatorcontrib><creatorcontrib>Mizuta, Hiroto</creatorcontrib><creatorcontrib>Ichikawa, Naho</creatorcontrib><creatorcontrib>Takamura, Masahiro</creatorcontrib><creatorcontrib>Okada, Go</creatorcontrib><creatorcontrib>Yamagata, Hirotaka</creatorcontrib><creatorcontrib>Harada, Kenichiro</creatorcontrib><creatorcontrib>Matsuo, Koji</creatorcontrib><creatorcontrib>Tanaka, Saori C</creatorcontrib><creatorcontrib>Kawato, Mitsuo</creatorcontrib><creatorcontrib>Kasai, Kiyoto</creatorcontrib><creatorcontrib>Kato, Nobumasa</creatorcontrib><creatorcontrib>Takahashi, Hidehiko</creatorcontrib><creatorcontrib>Okamoto, Yasumasa</creatorcontrib><creatorcontrib>Yamashita, Okito</creatorcontrib><creatorcontrib>Imamizu, Hiroshi</creatorcontrib><title>Generalizable brain network markers of major depressive disorder across multiple imaging sites</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Biological markers</subject><subject>Biology and Life Sciences</subject><subject>Brain - physiopathology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Cognitive ability</subject><subject>Computer and Information Sciences</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Depressive Disorder, Major - diagnostic imaging</subject><subject>Depressive Disorder, Major - metabolism</subject><subject>Depressive Disorder, Major - physiopathology</subject><subject>Diagnosis</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Innovations</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Major depressive disorder</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Nerve Net - physiology</subject><subject>Neural circuitry</subject><subject>Neural Pathways</subject><subject>Neuroimaging</subject><subject>Noise</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Protocol (computers)</subject><subject>Psychiatric disability evaluation</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Rest - physiology</subject><subject>Sampling</subject><subject>Scanners</subject><subject>Technology application</subject><subject>Testing</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBE4gKHXfyRxM6lUlVBWamiEl9HrLE9Cd4m8WIn5ePX423Tqot6APlgy37edzxjT5Y9pWRJuaCv134KA3TLjXZ-yQkhdVXdy_ZpWZQLIWV5_9Z6L3sU45oQxmomH2Z7nDNZiFrsZ19PcMAAnfsNusNcB3BDPuD4w4fzvIdwjiHmvknLtQ-5xU3AGN0F5tZFHyyGHEzwMeb91I1ukyxcD60b2jy6EePj7EEDXcQn83yQfX775tPxu8Xp2cnq-Oh0YWRZjQutbWmhElBpaEAyzbgVjDGia2NZU5a2aKAqsJYUiaFWE04otdQkBQNd84Ps-ZXvpvNRzaWJiqUkKa8Z54lYXRHWw1ptQrpm-KU8OHW54UOrIIzOdKiEliBNwRopRAFFIS2Duio4NYxZIlnyOpyjTbpHa3AYUwl3THdPBvdNtf5CCcEoLWQyeDkbBP99wjiq3kWDXQcD-ml770pyLkS1jfXiL_Tu7GaqhZSAGxqf4pqtqTqqSiJT0HLrtbyDSsNi74wfsHFpf0fwakeQmBF_ji1MMarVxw__wb7_d_bsyy5bXLGX_yxgc1NnStS2E64LoradoOZOSLJnt9_oRnT99fkfql8Edg</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Yamashita, Ayumu</creator><creator>Sakai, Yuki</creator><creator>Yamada, Takashi</creator><creator>Yahata, Noriaki</creator><creator>Kunimatsu, Akira</creator><creator>Okada, Naohiro</creator><creator>Itahashi, Takashi</creator><creator>Hashimoto, Ryuichiro</creator><creator>Mizuta, Hiroto</creator><creator>Ichikawa, Naho</creator><creator>Takamura, Masahiro</creator><creator>Okada, Go</creator><creator>Yamagata, Hirotaka</creator><creator>Harada, Kenichiro</creator><creator>Matsuo, Koji</creator><creator>Tanaka, Saori C</creator><creator>Kawato, Mitsuo</creator><creator>Kasai, Kiyoto</creator><creator>Kato, Nobumasa</creator><creator>Takahashi, Hidehiko</creator><creator>Okamoto, Yasumasa</creator><creator>Yamashita, Okito</creator><creator>Imamizu, Hiroshi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-9661-3412</orcidid><orcidid>https://orcid.org/0000-0002-2002-5526</orcidid><orcidid>https://orcid.org/0000-0003-1024-0051</orcidid><orcidid>https://orcid.org/0000-0002-6039-3657</orcidid><orcidid>https://orcid.org/0000-0003-3664-947X</orcidid><orcidid>https://orcid.org/0000-0001-9742-152X</orcidid><orcidid>https://orcid.org/0000-0003-3825-2919</orcidid><orcidid>https://orcid.org/0000-0001-8185-1197</orcidid><orcidid>https://orcid.org/0000-0002-7001-5051</orcidid><orcidid>https://orcid.org/0000-0003-2475-8548</orcidid><orcidid>https://orcid.org/0000-0002-4443-4535</orcidid></search><sort><creationdate>20201207</creationdate><title>Generalizable brain network markers of major depressive disorder across multiple imaging sites</title><author>Yamashita, Ayumu ; Sakai, Yuki ; Yamada, Takashi ; Yahata, Noriaki ; Kunimatsu, Akira ; Okada, Naohiro ; Itahashi, Takashi ; Hashimoto, Ryuichiro ; Mizuta, Hiroto ; Ichikawa, Naho ; Takamura, Masahiro ; Okada, Go ; Yamagata, Hirotaka ; Harada, Kenichiro ; Matsuo, Koji ; Tanaka, Saori C ; Kawato, Mitsuo ; Kasai, Kiyoto ; Kato, Nobumasa ; Takahashi, Hidehiko ; Okamoto, Yasumasa ; Yamashita, Okito ; Imamizu, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c856t-bbd5da67a6bafa82b23d72220b9cd2f55d4fa64e981e0c1db03011d1c7a62ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Biological markers</topic><topic>Biology and Life Sciences</topic><topic>Brain - physiopathology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Cognitive ability</topic><topic>Computer and Information Sciences</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Depressive Disorder, Major - diagnostic imaging</topic><topic>Depressive Disorder, Major - metabolism</topic><topic>Depressive Disorder, Major - physiopathology</topic><topic>Diagnosis</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Innovations</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Major depressive disorder</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Nerve Net - physiology</topic><topic>Neural circuitry</topic><topic>Neural Pathways</topic><topic>Neuroimaging</topic><topic>Noise</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Protocol (computers)</topic><topic>Psychiatric disability evaluation</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Rest - physiology</topic><topic>Sampling</topic><topic>Scanners</topic><topic>Technology application</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Ayumu</creatorcontrib><creatorcontrib>Sakai, Yuki</creatorcontrib><creatorcontrib>Yamada, Takashi</creatorcontrib><creatorcontrib>Yahata, Noriaki</creatorcontrib><creatorcontrib>Kunimatsu, Akira</creatorcontrib><creatorcontrib>Okada, Naohiro</creatorcontrib><creatorcontrib>Itahashi, Takashi</creatorcontrib><creatorcontrib>Hashimoto, Ryuichiro</creatorcontrib><creatorcontrib>Mizuta, Hiroto</creatorcontrib><creatorcontrib>Ichikawa, Naho</creatorcontrib><creatorcontrib>Takamura, Masahiro</creatorcontrib><creatorcontrib>Okada, Go</creatorcontrib><creatorcontrib>Yamagata, Hirotaka</creatorcontrib><creatorcontrib>Harada, Kenichiro</creatorcontrib><creatorcontrib>Matsuo, Koji</creatorcontrib><creatorcontrib>Tanaka, Saori C</creatorcontrib><creatorcontrib>Kawato, Mitsuo</creatorcontrib><creatorcontrib>Kasai, Kiyoto</creatorcontrib><creatorcontrib>Kato, Nobumasa</creatorcontrib><creatorcontrib>Takahashi, Hidehiko</creatorcontrib><creatorcontrib>Okamoto, Yasumasa</creatorcontrib><creatorcontrib>Yamashita, Okito</creatorcontrib><creatorcontrib>Imamizu, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, Ayumu</au><au>Sakai, Yuki</au><au>Yamada, Takashi</au><au>Yahata, Noriaki</au><au>Kunimatsu, Akira</au><au>Okada, Naohiro</au><au>Itahashi, Takashi</au><au>Hashimoto, Ryuichiro</au><au>Mizuta, Hiroto</au><au>Ichikawa, Naho</au><au>Takamura, Masahiro</au><au>Okada, Go</au><au>Yamagata, Hirotaka</au><au>Harada, Kenichiro</au><au>Matsuo, Koji</au><au>Tanaka, Saori C</au><au>Kawato, Mitsuo</au><au>Kasai, Kiyoto</au><au>Kato, Nobumasa</au><au>Takahashi, Hidehiko</au><au>Okamoto, Yasumasa</au><au>Yamashita, Okito</au><au>Imamizu, Hiroshi</au><au>Wager, Tor D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizable brain network markers of major depressive disorder across multiple imaging sites</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2020-12-07</date><risdate>2020</risdate><volume>18</volume><issue>12</issue><spage>e3000966</spage><epage>e3000966</epage><pages>e3000966-e3000966</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33284797</pmid><doi>10.1371/journal.pbio.3000966</doi><orcidid>https://orcid.org/0000-0002-9661-3412</orcidid><orcidid>https://orcid.org/0000-0002-2002-5526</orcidid><orcidid>https://orcid.org/0000-0003-1024-0051</orcidid><orcidid>https://orcid.org/0000-0002-6039-3657</orcidid><orcidid>https://orcid.org/0000-0003-3664-947X</orcidid><orcidid>https://orcid.org/0000-0001-9742-152X</orcidid><orcidid>https://orcid.org/0000-0003-3825-2919</orcidid><orcidid>https://orcid.org/0000-0001-8185-1197</orcidid><orcidid>https://orcid.org/0000-0002-7001-5051</orcidid><orcidid>https://orcid.org/0000-0003-2475-8548</orcidid><orcidid>https://orcid.org/0000-0002-4443-4535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2020-12, Vol.18 (12), p.e3000966-e3000966
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2479139233
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adult
Algorithms
Bias
Biological markers
Biology and Life Sciences
Brain - physiopathology
Brain mapping
Brain Mapping - methods
Brain research
Cognitive ability
Computer and Information Sciences
Databases, Factual
Datasets
Depressive Disorder, Major - diagnostic imaging
Depressive Disorder, Major - metabolism
Depressive Disorder, Major - physiopathology
Diagnosis
Female
Functional magnetic resonance imaging
Genetic aspects
Health aspects
Humans
Identification and classification
Innovations
Learning algorithms
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Major depressive disorder
Male
Medicine and Health Sciences
Mental depression
Mental disorders
Methods
Middle Aged
Nerve Net - physiology
Neural circuitry
Neural Pathways
Neuroimaging
Noise
Physical Sciences
Physiological aspects
Protocol (computers)
Psychiatric disability evaluation
Reproducibility of Results
Research and Analysis Methods
Rest - physiology
Sampling
Scanners
Technology application
Testing
title Generalizable brain network markers of major depressive disorder across multiple imaging sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizable%20brain%20network%20markers%20of%20major%20depressive%20disorder%20across%20multiple%20imaging%20sites&rft.jtitle=PLoS%20biology&rft.au=Yamashita,%20Ayumu&rft.date=2020-12-07&rft.volume=18&rft.issue=12&rft.spage=e3000966&rft.epage=e3000966&rft.pages=e3000966-e3000966&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000966&rft_dat=%3Cgale_plos_%3EA650814852%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479139233&rft_id=info:pmid/33284797&rft_galeid=A650814852&rft_doaj_id=oai_doaj_org_article_7b8a8c42f8774a448d2a96431c22d082&rfr_iscdi=true