Generalizable brain network markers of major depressive disorder across multiple imaging sites
Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site dif...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2020-12, Vol.18 (12), p.e3000966-e3000966 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3000966 |
---|---|
container_issue | 12 |
container_start_page | e3000966 |
container_title | PLoS biology |
container_volume | 18 |
creator | Yamashita, Ayumu Sakai, Yuki Yamada, Takashi Yahata, Noriaki Kunimatsu, Akira Okada, Naohiro Itahashi, Takashi Hashimoto, Ryuichiro Mizuta, Hiroto Ichikawa, Naho Takamura, Masahiro Okada, Go Yamagata, Hirotaka Harada, Kenichiro Matsuo, Koji Tanaka, Saori C Kawato, Mitsuo Kasai, Kiyoto Kato, Nobumasa Takahashi, Hidehiko Okamoto, Yasumasa Yamashita, Okito Imamizu, Hiroshi |
description | Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability. |
doi_str_mv | 10.1371/journal.pbio.3000966 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2479139233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650814852</galeid><doaj_id>oai_doaj_org_article_7b8a8c42f8774a448d2a96431c22d082</doaj_id><sourcerecordid>A650814852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c856t-bbd5da67a6bafa82b23d72220b9cd2f55d4fa64e981e0c1db03011d1c7a62ab93</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBE4gKHXfyRxM6lUlVBWamiEl9HrLE9Cd4m8WIn5ePX423Tqot6APlgy37edzxjT5Y9pWRJuaCv134KA3TLjXZ-yQkhdVXdy_ZpWZQLIWV5_9Z6L3sU45oQxmomH2Z7nDNZiFrsZ19PcMAAnfsNusNcB3BDPuD4w4fzvIdwjiHmvknLtQ-5xU3AGN0F5tZFHyyGHEzwMeb91I1ukyxcD60b2jy6EePj7EEDXcQn83yQfX775tPxu8Xp2cnq-Oh0YWRZjQutbWmhElBpaEAyzbgVjDGia2NZU5a2aKAqsJYUiaFWE04otdQkBQNd84Ps-ZXvpvNRzaWJiqUkKa8Z54lYXRHWw1ptQrpm-KU8OHW54UOrIIzOdKiEliBNwRopRAFFIS2Duio4NYxZIlnyOpyjTbpHa3AYUwl3THdPBvdNtf5CCcEoLWQyeDkbBP99wjiq3kWDXQcD-ml770pyLkS1jfXiL_Tu7GaqhZSAGxqf4pqtqTqqSiJT0HLrtbyDSsNi74wfsHFpf0fwakeQmBF_ji1MMarVxw__wb7_d_bsyy5bXLGX_yxgc1NnStS2E64LoradoOZOSLJnt9_oRnT99fkfql8Edg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479139233</pqid></control><display><type>article</type><title>Generalizable brain network markers of major depressive disorder across multiple imaging sites</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yamashita, Ayumu ; Sakai, Yuki ; Yamada, Takashi ; Yahata, Noriaki ; Kunimatsu, Akira ; Okada, Naohiro ; Itahashi, Takashi ; Hashimoto, Ryuichiro ; Mizuta, Hiroto ; Ichikawa, Naho ; Takamura, Masahiro ; Okada, Go ; Yamagata, Hirotaka ; Harada, Kenichiro ; Matsuo, Koji ; Tanaka, Saori C ; Kawato, Mitsuo ; Kasai, Kiyoto ; Kato, Nobumasa ; Takahashi, Hidehiko ; Okamoto, Yasumasa ; Yamashita, Okito ; Imamizu, Hiroshi</creator><contributor>Wager, Tor D.</contributor><creatorcontrib>Yamashita, Ayumu ; Sakai, Yuki ; Yamada, Takashi ; Yahata, Noriaki ; Kunimatsu, Akira ; Okada, Naohiro ; Itahashi, Takashi ; Hashimoto, Ryuichiro ; Mizuta, Hiroto ; Ichikawa, Naho ; Takamura, Masahiro ; Okada, Go ; Yamagata, Hirotaka ; Harada, Kenichiro ; Matsuo, Koji ; Tanaka, Saori C ; Kawato, Mitsuo ; Kasai, Kiyoto ; Kato, Nobumasa ; Takahashi, Hidehiko ; Okamoto, Yasumasa ; Yamashita, Okito ; Imamizu, Hiroshi ; Wager, Tor D.</creatorcontrib><description>Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000966</identifier><identifier>PMID: 33284797</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Bias ; Biological markers ; Biology and Life Sciences ; Brain - physiopathology ; Brain mapping ; Brain Mapping - methods ; Brain research ; Cognitive ability ; Computer and Information Sciences ; Databases, Factual ; Datasets ; Depressive Disorder, Major - diagnostic imaging ; Depressive Disorder, Major - metabolism ; Depressive Disorder, Major - physiopathology ; Diagnosis ; Female ; Functional magnetic resonance imaging ; Genetic aspects ; Health aspects ; Humans ; Identification and classification ; Innovations ; Learning algorithms ; Machine Learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Major depressive disorder ; Male ; Medicine and Health Sciences ; Mental depression ; Mental disorders ; Methods ; Middle Aged ; Nerve Net - physiology ; Neural circuitry ; Neural Pathways ; Neuroimaging ; Noise ; Physical Sciences ; Physiological aspects ; Protocol (computers) ; Psychiatric disability evaluation ; Reproducibility of Results ; Research and Analysis Methods ; Rest - physiology ; Sampling ; Scanners ; Technology application ; Testing</subject><ispartof>PLoS biology, 2020-12, Vol.18 (12), p.e3000966-e3000966</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Yamashita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Yamashita et al 2020 Yamashita et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c856t-bbd5da67a6bafa82b23d72220b9cd2f55d4fa64e981e0c1db03011d1c7a62ab93</citedby><cites>FETCH-LOGICAL-c856t-bbd5da67a6bafa82b23d72220b9cd2f55d4fa64e981e0c1db03011d1c7a62ab93</cites><orcidid>0000-0002-9661-3412 ; 0000-0002-2002-5526 ; 0000-0003-1024-0051 ; 0000-0002-6039-3657 ; 0000-0003-3664-947X ; 0000-0001-9742-152X ; 0000-0003-3825-2919 ; 0000-0001-8185-1197 ; 0000-0002-7001-5051 ; 0000-0003-2475-8548 ; 0000-0002-4443-4535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721148/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721148/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33284797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wager, Tor D.</contributor><creatorcontrib>Yamashita, Ayumu</creatorcontrib><creatorcontrib>Sakai, Yuki</creatorcontrib><creatorcontrib>Yamada, Takashi</creatorcontrib><creatorcontrib>Yahata, Noriaki</creatorcontrib><creatorcontrib>Kunimatsu, Akira</creatorcontrib><creatorcontrib>Okada, Naohiro</creatorcontrib><creatorcontrib>Itahashi, Takashi</creatorcontrib><creatorcontrib>Hashimoto, Ryuichiro</creatorcontrib><creatorcontrib>Mizuta, Hiroto</creatorcontrib><creatorcontrib>Ichikawa, Naho</creatorcontrib><creatorcontrib>Takamura, Masahiro</creatorcontrib><creatorcontrib>Okada, Go</creatorcontrib><creatorcontrib>Yamagata, Hirotaka</creatorcontrib><creatorcontrib>Harada, Kenichiro</creatorcontrib><creatorcontrib>Matsuo, Koji</creatorcontrib><creatorcontrib>Tanaka, Saori C</creatorcontrib><creatorcontrib>Kawato, Mitsuo</creatorcontrib><creatorcontrib>Kasai, Kiyoto</creatorcontrib><creatorcontrib>Kato, Nobumasa</creatorcontrib><creatorcontrib>Takahashi, Hidehiko</creatorcontrib><creatorcontrib>Okamoto, Yasumasa</creatorcontrib><creatorcontrib>Yamashita, Okito</creatorcontrib><creatorcontrib>Imamizu, Hiroshi</creatorcontrib><title>Generalizable brain network markers of major depressive disorder across multiple imaging sites</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Biological markers</subject><subject>Biology and Life Sciences</subject><subject>Brain - physiopathology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Cognitive ability</subject><subject>Computer and Information Sciences</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Depressive Disorder, Major - diagnostic imaging</subject><subject>Depressive Disorder, Major - metabolism</subject><subject>Depressive Disorder, Major - physiopathology</subject><subject>Diagnosis</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Innovations</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Major depressive disorder</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Nerve Net - physiology</subject><subject>Neural circuitry</subject><subject>Neural Pathways</subject><subject>Neuroimaging</subject><subject>Noise</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Protocol (computers)</subject><subject>Psychiatric disability evaluation</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Rest - physiology</subject><subject>Sampling</subject><subject>Scanners</subject><subject>Technology application</subject><subject>Testing</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBE4gKHXfyRxM6lUlVBWamiEl9HrLE9Cd4m8WIn5ePX423Tqot6APlgy37edzxjT5Y9pWRJuaCv134KA3TLjXZ-yQkhdVXdy_ZpWZQLIWV5_9Z6L3sU45oQxmomH2Z7nDNZiFrsZ19PcMAAnfsNusNcB3BDPuD4w4fzvIdwjiHmvknLtQ-5xU3AGN0F5tZFHyyGHEzwMeb91I1ukyxcD60b2jy6EePj7EEDXcQn83yQfX775tPxu8Xp2cnq-Oh0YWRZjQutbWmhElBpaEAyzbgVjDGia2NZU5a2aKAqsJYUiaFWE04otdQkBQNd84Ps-ZXvpvNRzaWJiqUkKa8Z54lYXRHWw1ptQrpm-KU8OHW54UOrIIzOdKiEliBNwRopRAFFIS2Duio4NYxZIlnyOpyjTbpHa3AYUwl3THdPBvdNtf5CCcEoLWQyeDkbBP99wjiq3kWDXQcD-ml770pyLkS1jfXiL_Tu7GaqhZSAGxqf4pqtqTqqSiJT0HLrtbyDSsNi74wfsHFpf0fwakeQmBF_ji1MMarVxw__wb7_d_bsyy5bXLGX_yxgc1NnStS2E64LoradoOZOSLJnt9_oRnT99fkfql8Edg</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Yamashita, Ayumu</creator><creator>Sakai, Yuki</creator><creator>Yamada, Takashi</creator><creator>Yahata, Noriaki</creator><creator>Kunimatsu, Akira</creator><creator>Okada, Naohiro</creator><creator>Itahashi, Takashi</creator><creator>Hashimoto, Ryuichiro</creator><creator>Mizuta, Hiroto</creator><creator>Ichikawa, Naho</creator><creator>Takamura, Masahiro</creator><creator>Okada, Go</creator><creator>Yamagata, Hirotaka</creator><creator>Harada, Kenichiro</creator><creator>Matsuo, Koji</creator><creator>Tanaka, Saori C</creator><creator>Kawato, Mitsuo</creator><creator>Kasai, Kiyoto</creator><creator>Kato, Nobumasa</creator><creator>Takahashi, Hidehiko</creator><creator>Okamoto, Yasumasa</creator><creator>Yamashita, Okito</creator><creator>Imamizu, Hiroshi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-9661-3412</orcidid><orcidid>https://orcid.org/0000-0002-2002-5526</orcidid><orcidid>https://orcid.org/0000-0003-1024-0051</orcidid><orcidid>https://orcid.org/0000-0002-6039-3657</orcidid><orcidid>https://orcid.org/0000-0003-3664-947X</orcidid><orcidid>https://orcid.org/0000-0001-9742-152X</orcidid><orcidid>https://orcid.org/0000-0003-3825-2919</orcidid><orcidid>https://orcid.org/0000-0001-8185-1197</orcidid><orcidid>https://orcid.org/0000-0002-7001-5051</orcidid><orcidid>https://orcid.org/0000-0003-2475-8548</orcidid><orcidid>https://orcid.org/0000-0002-4443-4535</orcidid></search><sort><creationdate>20201207</creationdate><title>Generalizable brain network markers of major depressive disorder across multiple imaging sites</title><author>Yamashita, Ayumu ; Sakai, Yuki ; Yamada, Takashi ; Yahata, Noriaki ; Kunimatsu, Akira ; Okada, Naohiro ; Itahashi, Takashi ; Hashimoto, Ryuichiro ; Mizuta, Hiroto ; Ichikawa, Naho ; Takamura, Masahiro ; Okada, Go ; Yamagata, Hirotaka ; Harada, Kenichiro ; Matsuo, Koji ; Tanaka, Saori C ; Kawato, Mitsuo ; Kasai, Kiyoto ; Kato, Nobumasa ; Takahashi, Hidehiko ; Okamoto, Yasumasa ; Yamashita, Okito ; Imamizu, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c856t-bbd5da67a6bafa82b23d72220b9cd2f55d4fa64e981e0c1db03011d1c7a62ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Biological markers</topic><topic>Biology and Life Sciences</topic><topic>Brain - physiopathology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Cognitive ability</topic><topic>Computer and Information Sciences</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Depressive Disorder, Major - diagnostic imaging</topic><topic>Depressive Disorder, Major - metabolism</topic><topic>Depressive Disorder, Major - physiopathology</topic><topic>Diagnosis</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Innovations</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Major depressive disorder</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Nerve Net - physiology</topic><topic>Neural circuitry</topic><topic>Neural Pathways</topic><topic>Neuroimaging</topic><topic>Noise</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Protocol (computers)</topic><topic>Psychiatric disability evaluation</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Rest - physiology</topic><topic>Sampling</topic><topic>Scanners</topic><topic>Technology application</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Ayumu</creatorcontrib><creatorcontrib>Sakai, Yuki</creatorcontrib><creatorcontrib>Yamada, Takashi</creatorcontrib><creatorcontrib>Yahata, Noriaki</creatorcontrib><creatorcontrib>Kunimatsu, Akira</creatorcontrib><creatorcontrib>Okada, Naohiro</creatorcontrib><creatorcontrib>Itahashi, Takashi</creatorcontrib><creatorcontrib>Hashimoto, Ryuichiro</creatorcontrib><creatorcontrib>Mizuta, Hiroto</creatorcontrib><creatorcontrib>Ichikawa, Naho</creatorcontrib><creatorcontrib>Takamura, Masahiro</creatorcontrib><creatorcontrib>Okada, Go</creatorcontrib><creatorcontrib>Yamagata, Hirotaka</creatorcontrib><creatorcontrib>Harada, Kenichiro</creatorcontrib><creatorcontrib>Matsuo, Koji</creatorcontrib><creatorcontrib>Tanaka, Saori C</creatorcontrib><creatorcontrib>Kawato, Mitsuo</creatorcontrib><creatorcontrib>Kasai, Kiyoto</creatorcontrib><creatorcontrib>Kato, Nobumasa</creatorcontrib><creatorcontrib>Takahashi, Hidehiko</creatorcontrib><creatorcontrib>Okamoto, Yasumasa</creatorcontrib><creatorcontrib>Yamashita, Okito</creatorcontrib><creatorcontrib>Imamizu, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, Ayumu</au><au>Sakai, Yuki</au><au>Yamada, Takashi</au><au>Yahata, Noriaki</au><au>Kunimatsu, Akira</au><au>Okada, Naohiro</au><au>Itahashi, Takashi</au><au>Hashimoto, Ryuichiro</au><au>Mizuta, Hiroto</au><au>Ichikawa, Naho</au><au>Takamura, Masahiro</au><au>Okada, Go</au><au>Yamagata, Hirotaka</au><au>Harada, Kenichiro</au><au>Matsuo, Koji</au><au>Tanaka, Saori C</au><au>Kawato, Mitsuo</au><au>Kasai, Kiyoto</au><au>Kato, Nobumasa</au><au>Takahashi, Hidehiko</au><au>Okamoto, Yasumasa</au><au>Yamashita, Okito</au><au>Imamizu, Hiroshi</au><au>Wager, Tor D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizable brain network markers of major depressive disorder across multiple imaging sites</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2020-12-07</date><risdate>2020</risdate><volume>18</volume><issue>12</issue><spage>e3000966</spage><epage>e3000966</epage><pages>e3000966-e3000966</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33284797</pmid><doi>10.1371/journal.pbio.3000966</doi><orcidid>https://orcid.org/0000-0002-9661-3412</orcidid><orcidid>https://orcid.org/0000-0002-2002-5526</orcidid><orcidid>https://orcid.org/0000-0003-1024-0051</orcidid><orcidid>https://orcid.org/0000-0002-6039-3657</orcidid><orcidid>https://orcid.org/0000-0003-3664-947X</orcidid><orcidid>https://orcid.org/0000-0001-9742-152X</orcidid><orcidid>https://orcid.org/0000-0003-3825-2919</orcidid><orcidid>https://orcid.org/0000-0001-8185-1197</orcidid><orcidid>https://orcid.org/0000-0002-7001-5051</orcidid><orcidid>https://orcid.org/0000-0003-2475-8548</orcidid><orcidid>https://orcid.org/0000-0002-4443-4535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2020-12, Vol.18 (12), p.e3000966-e3000966 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2479139233 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Algorithms Bias Biological markers Biology and Life Sciences Brain - physiopathology Brain mapping Brain Mapping - methods Brain research Cognitive ability Computer and Information Sciences Databases, Factual Datasets Depressive Disorder, Major - diagnostic imaging Depressive Disorder, Major - metabolism Depressive Disorder, Major - physiopathology Diagnosis Female Functional magnetic resonance imaging Genetic aspects Health aspects Humans Identification and classification Innovations Learning algorithms Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Major depressive disorder Male Medicine and Health Sciences Mental depression Mental disorders Methods Middle Aged Nerve Net - physiology Neural circuitry Neural Pathways Neuroimaging Noise Physical Sciences Physiological aspects Protocol (computers) Psychiatric disability evaluation Reproducibility of Results Research and Analysis Methods Rest - physiology Sampling Scanners Technology application Testing |
title | Generalizable brain network markers of major depressive disorder across multiple imaging sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizable%20brain%20network%20markers%20of%20major%20depressive%20disorder%20across%20multiple%20imaging%20sites&rft.jtitle=PLoS%20biology&rft.au=Yamashita,%20Ayumu&rft.date=2020-12-07&rft.volume=18&rft.issue=12&rft.spage=e3000966&rft.epage=e3000966&rft.pages=e3000966-e3000966&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000966&rft_dat=%3Cgale_plos_%3EA650814852%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479139233&rft_id=info:pmid/33284797&rft_galeid=A650814852&rft_doaj_id=oai_doaj_org_article_7b8a8c42f8774a448d2a96431c22d082&rfr_iscdi=true |