Alpha-Power Exponentiated Inverse Rayleigh distribution and its applications to real and simulated data
The main goal of the current paper is to contribute to the existing literature of probability distributions. In this paper, a new probability distribution is generated by using the Alpha Power Family of distributions with the aim to model the data with non-monotonic failure rates and provides a bett...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-01, Vol.16 (1), p.e0245253-e0245253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0245253 |
---|---|
container_issue | 1 |
container_start_page | e0245253 |
container_title | PloS one |
container_volume | 16 |
creator | Ali, Muhammad Khalil, Alamgir Ijaz, Muhammad Saeed, Noor |
description | The main goal of the current paper is to contribute to the existing literature of probability distributions. In this paper, a new probability distribution is generated by using the Alpha Power Family of distributions with the aim to model the data with non-monotonic failure rates and provides a better fit. The proposed distribution is called Alpha Power Exponentiated Inverse Rayleigh or in short APEIR distribution. Various statistical properties have been investigated including they are the order statistics, moments, residual life function, mean waiting time, quantiles, entropy, and stress-strength parameter. To estimate the parameters of the proposed distribution, the maximum likelihood method is employed. It has been proved theoretically that the proposed distribution provides a better fit to the data with monotonic as well as non-monotonic hazard rate shapes. Moreover, two real data sets are used to evaluate the significance and flexibility of the proposed distribution as compared to other probability distributions. |
doi_str_mv | 10.1371/journal.pone.0245253 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2478022624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A648383524</galeid><doaj_id>oai_doaj_org_article_d78b8c252fab4155aae8395acf8e6d7a</doaj_id><sourcerecordid>A648383524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-29e366f14e3dc69c88a2d40d6b110ba50f4ddb94956dd87f0869bea7ef7c91a33</originalsourceid><addsrcrecordid>eNqNk99v0zAQxyMEYmPwHyCIhITgocWxHcd5QaqmAZUmDY0fr9bFdlpPbpzZztj-e9w2mxq0B-QHW-fPfe98vsuy1wWaF6QqPl25wXdg573r9BxhWuKSPMmOi5rgGcOIPD04H2UvQrhCqCScsefZESGUUkLRcbZa2H4Ns-_uj_b52e1WrIsGolb5srvRPuj8Eu6sNqt1rkyI3jRDNK7LoVO5iSGHvrdGwtYW8uhyr8HuLoPZDHYnpCDCy-xZCzboV-N-kv36cvbz9Nvs_OLr8nRxPpOsxnGGa00YawuqiUoWyTlgRZFiTVGgBkrUUqWamtYlU4pXLeKsbjRUuq1kXQAhJ9nbvW5vXRBjjYLAtOIIY4ZpIpZ7Qjm4Er03G_B3woERO4PzKwE-Gmm1UBVvuMQlbqGhRVkCaE7qEmTLNVMVJK3PY7Sh2WglU-082Ino9KYza7FyNyJlw0teJYEPo4B314MOUWxMkNpa6LQb9nmXdUodJfTdP-jjrxupFaQHmK51Ka7ciooFo5xwUu6o-SNUWkpvjEw90Jpknzh8nDgkJurbuIIhBLH8cfn_7MXvKfv-gF2n3onr4OyuxcIUpHtQeheC1-1DkQsktvNwXw2xbWExzkNye3P4QQ9O9wNA_gIvFAbv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478022624</pqid></control><display><type>article</type><title>Alpha-Power Exponentiated Inverse Rayleigh distribution and its applications to real and simulated data</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ali, Muhammad ; Khalil, Alamgir ; Ijaz, Muhammad ; Saeed, Noor</creator><contributor>Chen, Feng</contributor><creatorcontrib>Ali, Muhammad ; Khalil, Alamgir ; Ijaz, Muhammad ; Saeed, Noor ; Chen, Feng</creatorcontrib><description>The main goal of the current paper is to contribute to the existing literature of probability distributions. In this paper, a new probability distribution is generated by using the Alpha Power Family of distributions with the aim to model the data with non-monotonic failure rates and provides a better fit. The proposed distribution is called Alpha Power Exponentiated Inverse Rayleigh or in short APEIR distribution. Various statistical properties have been investigated including they are the order statistics, moments, residual life function, mean waiting time, quantiles, entropy, and stress-strength parameter. To estimate the parameters of the proposed distribution, the maximum likelihood method is employed. It has been proved theoretically that the proposed distribution provides a better fit to the data with monotonic as well as non-monotonic hazard rate shapes. Moreover, two real data sets are used to evaluate the significance and flexibility of the proposed distribution as compared to other probability distributions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0245253</identifier><identifier>PMID: 33444340</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alpha rays ; Data structures ; Distribution (Probability theory) ; Drafting software ; Editing ; Electric power distribution ; Electronic mail ; Entropy (Information theory) ; Failure rates ; Flexibility ; Mathematical models ; Mean ; Parameter estimation ; Physical Sciences ; Probability distribution ; Random variables ; Rayleigh distribution ; Research and Analysis Methods ; Reviews ; Statistical analysis ; Statistics ; Weibull distribution</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0245253-e0245253</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Ali et al 2021 Ali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-29e366f14e3dc69c88a2d40d6b110ba50f4ddb94956dd87f0869bea7ef7c91a33</citedby><cites>FETCH-LOGICAL-c692t-29e366f14e3dc69c88a2d40d6b110ba50f4ddb94956dd87f0869bea7ef7c91a33</cites><orcidid>0000-0003-1403-7093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808587/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33444340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Feng</contributor><creatorcontrib>Ali, Muhammad</creatorcontrib><creatorcontrib>Khalil, Alamgir</creatorcontrib><creatorcontrib>Ijaz, Muhammad</creatorcontrib><creatorcontrib>Saeed, Noor</creatorcontrib><title>Alpha-Power Exponentiated Inverse Rayleigh distribution and its applications to real and simulated data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The main goal of the current paper is to contribute to the existing literature of probability distributions. In this paper, a new probability distribution is generated by using the Alpha Power Family of distributions with the aim to model the data with non-monotonic failure rates and provides a better fit. The proposed distribution is called Alpha Power Exponentiated Inverse Rayleigh or in short APEIR distribution. Various statistical properties have been investigated including they are the order statistics, moments, residual life function, mean waiting time, quantiles, entropy, and stress-strength parameter. To estimate the parameters of the proposed distribution, the maximum likelihood method is employed. It has been proved theoretically that the proposed distribution provides a better fit to the data with monotonic as well as non-monotonic hazard rate shapes. Moreover, two real data sets are used to evaluate the significance and flexibility of the proposed distribution as compared to other probability distributions.</description><subject>Alpha rays</subject><subject>Data structures</subject><subject>Distribution (Probability theory)</subject><subject>Drafting software</subject><subject>Editing</subject><subject>Electric power distribution</subject><subject>Electronic mail</subject><subject>Entropy (Information theory)</subject><subject>Failure rates</subject><subject>Flexibility</subject><subject>Mathematical models</subject><subject>Mean</subject><subject>Parameter estimation</subject><subject>Physical Sciences</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Rayleigh distribution</subject><subject>Research and Analysis Methods</subject><subject>Reviews</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Weibull distribution</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99v0zAQxyMEYmPwHyCIhITgocWxHcd5QaqmAZUmDY0fr9bFdlpPbpzZztj-e9w2mxq0B-QHW-fPfe98vsuy1wWaF6QqPl25wXdg573r9BxhWuKSPMmOi5rgGcOIPD04H2UvQrhCqCScsefZESGUUkLRcbZa2H4Ns-_uj_b52e1WrIsGolb5srvRPuj8Eu6sNqt1rkyI3jRDNK7LoVO5iSGHvrdGwtYW8uhyr8HuLoPZDHYnpCDCy-xZCzboV-N-kv36cvbz9Nvs_OLr8nRxPpOsxnGGa00YawuqiUoWyTlgRZFiTVGgBkrUUqWamtYlU4pXLeKsbjRUuq1kXQAhJ9nbvW5vXRBjjYLAtOIIY4ZpIpZ7Qjm4Er03G_B3woERO4PzKwE-Gmm1UBVvuMQlbqGhRVkCaE7qEmTLNVMVJK3PY7Sh2WglU-082Ino9KYza7FyNyJlw0teJYEPo4B314MOUWxMkNpa6LQb9nmXdUodJfTdP-jjrxupFaQHmK51Ka7ciooFo5xwUu6o-SNUWkpvjEw90Jpknzh8nDgkJurbuIIhBLH8cfn_7MXvKfv-gF2n3onr4OyuxcIUpHtQeheC1-1DkQsktvNwXw2xbWExzkNye3P4QQ9O9wNA_gIvFAbv</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Ali, Muhammad</creator><creator>Khalil, Alamgir</creator><creator>Ijaz, Muhammad</creator><creator>Saeed, Noor</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1403-7093</orcidid></search><sort><creationdate>20210114</creationdate><title>Alpha-Power Exponentiated Inverse Rayleigh distribution and its applications to real and simulated data</title><author>Ali, Muhammad ; Khalil, Alamgir ; Ijaz, Muhammad ; Saeed, Noor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-29e366f14e3dc69c88a2d40d6b110ba50f4ddb94956dd87f0869bea7ef7c91a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alpha rays</topic><topic>Data structures</topic><topic>Distribution (Probability theory)</topic><topic>Drafting software</topic><topic>Editing</topic><topic>Electric power distribution</topic><topic>Electronic mail</topic><topic>Entropy (Information theory)</topic><topic>Failure rates</topic><topic>Flexibility</topic><topic>Mathematical models</topic><topic>Mean</topic><topic>Parameter estimation</topic><topic>Physical Sciences</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Rayleigh distribution</topic><topic>Research and Analysis Methods</topic><topic>Reviews</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Muhammad</creatorcontrib><creatorcontrib>Khalil, Alamgir</creatorcontrib><creatorcontrib>Ijaz, Muhammad</creatorcontrib><creatorcontrib>Saeed, Noor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Muhammad</au><au>Khalil, Alamgir</au><au>Ijaz, Muhammad</au><au>Saeed, Noor</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alpha-Power Exponentiated Inverse Rayleigh distribution and its applications to real and simulated data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0245253</spage><epage>e0245253</epage><pages>e0245253-e0245253</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The main goal of the current paper is to contribute to the existing literature of probability distributions. In this paper, a new probability distribution is generated by using the Alpha Power Family of distributions with the aim to model the data with non-monotonic failure rates and provides a better fit. The proposed distribution is called Alpha Power Exponentiated Inverse Rayleigh or in short APEIR distribution. Various statistical properties have been investigated including they are the order statistics, moments, residual life function, mean waiting time, quantiles, entropy, and stress-strength parameter. To estimate the parameters of the proposed distribution, the maximum likelihood method is employed. It has been proved theoretically that the proposed distribution provides a better fit to the data with monotonic as well as non-monotonic hazard rate shapes. Moreover, two real data sets are used to evaluate the significance and flexibility of the proposed distribution as compared to other probability distributions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33444340</pmid><doi>10.1371/journal.pone.0245253</doi><tpages>e0245253</tpages><orcidid>https://orcid.org/0000-0003-1403-7093</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-01, Vol.16 (1), p.e0245253-e0245253 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2478022624 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alpha rays Data structures Distribution (Probability theory) Drafting software Editing Electric power distribution Electronic mail Entropy (Information theory) Failure rates Flexibility Mathematical models Mean Parameter estimation Physical Sciences Probability distribution Random variables Rayleigh distribution Research and Analysis Methods Reviews Statistical analysis Statistics Weibull distribution |
title | Alpha-Power Exponentiated Inverse Rayleigh distribution and its applications to real and simulated data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alpha-Power%20Exponentiated%20Inverse%20Rayleigh%20distribution%20and%20its%20applications%20to%20real%20and%20simulated%20data&rft.jtitle=PloS%20one&rft.au=Ali,%20Muhammad&rft.date=2021-01-14&rft.volume=16&rft.issue=1&rft.spage=e0245253&rft.epage=e0245253&rft.pages=e0245253-e0245253&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0245253&rft_dat=%3Cgale_plos_%3EA648383524%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478022624&rft_id=info:pmid/33444340&rft_galeid=A648383524&rft_doaj_id=oai_doaj_org_article_d78b8c252fab4155aae8395acf8e6d7a&rfr_iscdi=true |