Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use

Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. We enrolled 2191 consecutive hospitalized patients with COVID-19...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-01, Vol.16 (1), p.e0245281-e0245281
Hauptverfasser: Magro, Bianca, Zuccaro, Valentina, Novelli, Luca, Zileri, Lorenzo, Celsa, Ciro, Raimondi, Federico, Gori, Mauro, Cammà, Giulia, Battaglia, Salvatore, Genova, Vincenzo Giuseppe, Paris, Laura, Tacelli, Matteo, Mancarella, Francesco Antonio, Enea, Marco, Attanasio, Massimo, Senni, Michele, Di Marco, Fabiano, Lorini, Luca Ferdinando, Fagiuoli, Stefano, Bruno, Raffaele, Cammà, Calogero, Gasbarrini, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0245281
container_issue 1
container_start_page e0245281
container_title PloS one
container_volume 16
creator Magro, Bianca
Zuccaro, Valentina
Novelli, Luca
Zileri, Lorenzo
Celsa, Ciro
Raimondi, Federico
Gori, Mauro
Cammà, Giulia
Battaglia, Salvatore
Genova, Vincenzo Giuseppe
Paris, Laura
Tacelli, Matteo
Mancarella, Francesco Antonio
Enea, Marco
Attanasio, Massimo
Senni, Michele
Di Marco, Fabiano
Lorini, Luca Ferdinando
Fagiuoli, Stefano
Bruno, Raffaele
Cammà, Calogero
Gasbarrini, Antonio
description Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. We enrolled 2191 consecutive hospitalized patients with COVID-19 from three Italian dedicated units (derivation cohort: 1810 consecutive patients from Bergamo and Pavia units; validation cohort: 381 consecutive patients from Rome unit). The outcome was in-hospital mortality. Fine and Gray competing risks multivariate model (with discharge as a competing event) was used to develop a prediction rule for in-hospital mortality. Discrimination and calibration were assessed by the area under the receiver operating characteristic curve (AUC) and by Brier score in both the derivation and validation cohorts. Seven variables were independent risk factors for in-hospital mortality: age (Hazard Ratio [HR] 1.08, 95% Confidence Interval [CI] 1.07-1.09), male sex (HR 1.62, 95%CI 1.30-2.00), duration of symptoms before hospital admission
doi_str_mv 10.1371/journal.pone.0245281
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2478022617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A648383512</galeid><doaj_id>oai_doaj_org_article_11a318d4a28c4395b7eb4169c6361da6</doaj_id><sourcerecordid>A648383512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c7cf75196b20410183ad733b5e0af62dc95102ae5ae21cfc907ba420971584193</originalsourceid><addsrcrecordid>eNqNk0uP0zAQxyMEYpeFb4AgEhKCQ4sfieNwQKrKq9JKi3hdrYnjpK6cONhOxX57XJpdNWgP2Iexxr_52zP2JMlTjJaYFvjNzo6uB7McbK-WiGQ54fheco5LShaMIHr_ZH2WPPJ-h1BOOWMPkzNKszgwPk_aL07VWgbdt6nuF1vrBx3ApJ110ehwnTbOdunaOtvDXrvRp--1V-BVShAu36ar1OtuMCrdR7yGoOoUhiFtrEul0b2WUWz06nHyoAHj1ZPJXiQ_Pn74vv68uLz6tFmvLheSlSQsZCGbIsclqwjKMMKcQl1QWuUKQcNILcscIwIqB0WwbGSJigoygsoC5zyL-V4kz4-6g7FeTDXygmQFR4QwXERicyRqCzsxON2BuxYWtPjrsK4V4IKWRgmMgWJeZ0C4zGiZV4WqMsxKySjDNbCo9W46baw6VUvVBwdmJjrf6fVWtHYv4m04wweBV5OAs79G5YPotJfKGOiVHY_3zkvO8wP64h_07uwmqoWYgO4bG8-VB1GxYhmnnOaYRGp5BxVnrTot44dqdPTPAl7PAiIT1O_Qwui92Hz7-v_s1c85-_KE3SowYeutGYO2vZ-D2RGUznrvVHNbZIzEoR9uqiEO_SCmfohhz04f6DbopgHoH5_aA54</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478022617</pqid></control><display><type>article</type><title>Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Magro, Bianca ; Zuccaro, Valentina ; Novelli, Luca ; Zileri, Lorenzo ; Celsa, Ciro ; Raimondi, Federico ; Gori, Mauro ; Cammà, Giulia ; Battaglia, Salvatore ; Genova, Vincenzo Giuseppe ; Paris, Laura ; Tacelli, Matteo ; Mancarella, Francesco Antonio ; Enea, Marco ; Attanasio, Massimo ; Senni, Michele ; Di Marco, Fabiano ; Lorini, Luca Ferdinando ; Fagiuoli, Stefano ; Bruno, Raffaele ; Cammà, Calogero ; Gasbarrini, Antonio</creator><contributor>Di Gennaro, Francesco</contributor><creatorcontrib>Magro, Bianca ; Zuccaro, Valentina ; Novelli, Luca ; Zileri, Lorenzo ; Celsa, Ciro ; Raimondi, Federico ; Gori, Mauro ; Cammà, Giulia ; Battaglia, Salvatore ; Genova, Vincenzo Giuseppe ; Paris, Laura ; Tacelli, Matteo ; Mancarella, Francesco Antonio ; Enea, Marco ; Attanasio, Massimo ; Senni, Michele ; Di Marco, Fabiano ; Lorini, Luca Ferdinando ; Fagiuoli, Stefano ; Bruno, Raffaele ; Cammà, Calogero ; Gasbarrini, Antonio ; Di Gennaro, Francesco</creatorcontrib><description>Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. We enrolled 2191 consecutive hospitalized patients with COVID-19 from three Italian dedicated units (derivation cohort: 1810 consecutive patients from Bergamo and Pavia units; validation cohort: 381 consecutive patients from Rome unit). The outcome was in-hospital mortality. Fine and Gray competing risks multivariate model (with discharge as a competing event) was used to develop a prediction rule for in-hospital mortality. Discrimination and calibration were assessed by the area under the receiver operating characteristic curve (AUC) and by Brier score in both the derivation and validation cohorts. Seven variables were independent risk factors for in-hospital mortality: age (Hazard Ratio [HR] 1.08, 95% Confidence Interval [CI] 1.07-1.09), male sex (HR 1.62, 95%CI 1.30-2.00), duration of symptoms before hospital admission &lt;10 days (HR 1.72, 95%CI 1.39-2.12), diabetes (HR 1.21, 95%CI 1.02-1.45), coronary heart disease (HR 1.40 95% CI 1.09-1.80), chronic liver disease (HR 1.78, 95%CI 1.16-2.72), and lactate dehydrogenase levels at admission (HR 1.0003, 95%CI 1.0002-1.0005). The AUC was 0.822 (95%CI 0.722-0.922) in the derivation cohort and 0.820 (95%CI 0.724-0.920) in the validation cohort with good calibration. The prediction rule is freely available as a web-app (COVID-CALC: https://sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp). A validated simple clinical prediction rule can promptly and accurately assess the risk for in-hospital mortality, improving triage and the management of patients with COVID-19.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0245281</identifier><identifier>PMID: 33444411</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Antiviral drugs ; Blood ; Blood coagulation ; Bone marrow ; Bone marrow transplantation ; Business ; C-reactive protein ; Cardiology ; Child care ; Children ; Coagulation ; Cohort Studies ; Computed tomography ; Computer programs ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; COVID-19 - mortality ; Creatine ; Creatine kinase ; Diabetes ; Diagnostic systems ; Drafting software ; Drug dosages ; Economic analysis ; Economics ; Editing ; Epidemics ; Female ; Gastroenterology ; Health promotion ; Health risks ; Hematology ; Hepatology ; Hospital Mortality ; Hospital patients ; Hospitalization ; Hospitalization - statistics &amp; numerical data ; Hospitals ; Humans ; Infectious diseases ; Internal medicine ; Italy - epidemiology ; Kinases ; L-Lactate dehydrogenase ; Laboratories ; Lactate dehydrogenase ; Lactic acid ; Male ; Medical examination ; Medicine ; Medicine and Health Sciences ; Methodology ; Middle Aged ; Mobile Applications ; Mortality ; Pandemics ; Patients ; Public health ; Radiography ; Respiratory diseases ; Retrospective Studies ; Risk analysis ; Risk Assessment - methods ; Risk Factors ; ROC Curve ; SARS-CoV-2 - isolation &amp; purification ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Software ; Statistical analysis ; Statistics ; Survival analysis ; Transaminase ; Transplantation ; Transplants &amp; implants ; Viral diseases ; Web applications</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0245281-e0245281</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Magro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Magro et al 2021 Magro et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c7cf75196b20410183ad733b5e0af62dc95102ae5ae21cfc907ba420971584193</citedby><cites>FETCH-LOGICAL-c692t-c7cf75196b20410183ad733b5e0af62dc95102ae5ae21cfc907ba420971584193</cites><orcidid>0000-0002-5662-2162 ; 0000-0002-2705-248X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808616/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33444411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Di Gennaro, Francesco</contributor><creatorcontrib>Magro, Bianca</creatorcontrib><creatorcontrib>Zuccaro, Valentina</creatorcontrib><creatorcontrib>Novelli, Luca</creatorcontrib><creatorcontrib>Zileri, Lorenzo</creatorcontrib><creatorcontrib>Celsa, Ciro</creatorcontrib><creatorcontrib>Raimondi, Federico</creatorcontrib><creatorcontrib>Gori, Mauro</creatorcontrib><creatorcontrib>Cammà, Giulia</creatorcontrib><creatorcontrib>Battaglia, Salvatore</creatorcontrib><creatorcontrib>Genova, Vincenzo Giuseppe</creatorcontrib><creatorcontrib>Paris, Laura</creatorcontrib><creatorcontrib>Tacelli, Matteo</creatorcontrib><creatorcontrib>Mancarella, Francesco Antonio</creatorcontrib><creatorcontrib>Enea, Marco</creatorcontrib><creatorcontrib>Attanasio, Massimo</creatorcontrib><creatorcontrib>Senni, Michele</creatorcontrib><creatorcontrib>Di Marco, Fabiano</creatorcontrib><creatorcontrib>Lorini, Luca Ferdinando</creatorcontrib><creatorcontrib>Fagiuoli, Stefano</creatorcontrib><creatorcontrib>Bruno, Raffaele</creatorcontrib><creatorcontrib>Cammà, Calogero</creatorcontrib><creatorcontrib>Gasbarrini, Antonio</creatorcontrib><title>Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. We enrolled 2191 consecutive hospitalized patients with COVID-19 from three Italian dedicated units (derivation cohort: 1810 consecutive patients from Bergamo and Pavia units; validation cohort: 381 consecutive patients from Rome unit). The outcome was in-hospital mortality. Fine and Gray competing risks multivariate model (with discharge as a competing event) was used to develop a prediction rule for in-hospital mortality. Discrimination and calibration were assessed by the area under the receiver operating characteristic curve (AUC) and by Brier score in both the derivation and validation cohorts. Seven variables were independent risk factors for in-hospital mortality: age (Hazard Ratio [HR] 1.08, 95% Confidence Interval [CI] 1.07-1.09), male sex (HR 1.62, 95%CI 1.30-2.00), duration of symptoms before hospital admission &lt;10 days (HR 1.72, 95%CI 1.39-2.12), diabetes (HR 1.21, 95%CI 1.02-1.45), coronary heart disease (HR 1.40 95% CI 1.09-1.80), chronic liver disease (HR 1.78, 95%CI 1.16-2.72), and lactate dehydrogenase levels at admission (HR 1.0003, 95%CI 1.0002-1.0005). The AUC was 0.822 (95%CI 0.722-0.922) in the derivation cohort and 0.820 (95%CI 0.724-0.920) in the validation cohort with good calibration. The prediction rule is freely available as a web-app (COVID-CALC: https://sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp). A validated simple clinical prediction rule can promptly and accurately assess the risk for in-hospital mortality, improving triage and the management of patients with COVID-19.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Antiviral drugs</subject><subject>Blood</subject><subject>Blood coagulation</subject><subject>Bone marrow</subject><subject>Bone marrow transplantation</subject><subject>Business</subject><subject>C-reactive protein</subject><subject>Cardiology</subject><subject>Child care</subject><subject>Children</subject><subject>Coagulation</subject><subject>Cohort Studies</subject><subject>Computed tomography</subject><subject>Computer programs</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - mortality</subject><subject>Creatine</subject><subject>Creatine kinase</subject><subject>Diabetes</subject><subject>Diagnostic systems</subject><subject>Drafting software</subject><subject>Drug dosages</subject><subject>Economic analysis</subject><subject>Economics</subject><subject>Editing</subject><subject>Epidemics</subject><subject>Female</subject><subject>Gastroenterology</subject><subject>Health promotion</subject><subject>Health risks</subject><subject>Hematology</subject><subject>Hepatology</subject><subject>Hospital Mortality</subject><subject>Hospital patients</subject><subject>Hospitalization</subject><subject>Hospitalization - statistics &amp; numerical data</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Internal medicine</subject><subject>Italy - epidemiology</subject><subject>Kinases</subject><subject>L-Lactate dehydrogenase</subject><subject>Laboratories</subject><subject>Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Male</subject><subject>Medical examination</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Middle Aged</subject><subject>Mobile Applications</subject><subject>Mortality</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Public health</subject><subject>Radiography</subject><subject>Respiratory diseases</subject><subject>Retrospective Studies</subject><subject>Risk analysis</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>SARS-CoV-2 - isolation &amp; purification</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Survival analysis</subject><subject>Transaminase</subject><subject>Transplantation</subject><subject>Transplants &amp; implants</subject><subject>Viral diseases</subject><subject>Web applications</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0uP0zAQxyMEYpeFb4AgEhKCQ4sfieNwQKrKq9JKi3hdrYnjpK6cONhOxX57XJpdNWgP2Iexxr_52zP2JMlTjJaYFvjNzo6uB7McbK-WiGQ54fheco5LShaMIHr_ZH2WPPJ-h1BOOWMPkzNKszgwPk_aL07VWgbdt6nuF1vrBx3ApJ110ehwnTbOdunaOtvDXrvRp--1V-BVShAu36ar1OtuMCrdR7yGoOoUhiFtrEul0b2WUWz06nHyoAHj1ZPJXiQ_Pn74vv68uLz6tFmvLheSlSQsZCGbIsclqwjKMMKcQl1QWuUKQcNILcscIwIqB0WwbGSJigoygsoC5zyL-V4kz4-6g7FeTDXygmQFR4QwXERicyRqCzsxON2BuxYWtPjrsK4V4IKWRgmMgWJeZ0C4zGiZV4WqMsxKySjDNbCo9W46baw6VUvVBwdmJjrf6fVWtHYv4m04wweBV5OAs79G5YPotJfKGOiVHY_3zkvO8wP64h_07uwmqoWYgO4bG8-VB1GxYhmnnOaYRGp5BxVnrTot44dqdPTPAl7PAiIT1O_Qwui92Hz7-v_s1c85-_KE3SowYeutGYO2vZ-D2RGUznrvVHNbZIzEoR9uqiEO_SCmfohhz04f6DbopgHoH5_aA54</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Magro, Bianca</creator><creator>Zuccaro, Valentina</creator><creator>Novelli, Luca</creator><creator>Zileri, Lorenzo</creator><creator>Celsa, Ciro</creator><creator>Raimondi, Federico</creator><creator>Gori, Mauro</creator><creator>Cammà, Giulia</creator><creator>Battaglia, Salvatore</creator><creator>Genova, Vincenzo Giuseppe</creator><creator>Paris, Laura</creator><creator>Tacelli, Matteo</creator><creator>Mancarella, Francesco Antonio</creator><creator>Enea, Marco</creator><creator>Attanasio, Massimo</creator><creator>Senni, Michele</creator><creator>Di Marco, Fabiano</creator><creator>Lorini, Luca Ferdinando</creator><creator>Fagiuoli, Stefano</creator><creator>Bruno, Raffaele</creator><creator>Cammà, Calogero</creator><creator>Gasbarrini, Antonio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5662-2162</orcidid><orcidid>https://orcid.org/0000-0002-2705-248X</orcidid></search><sort><creationdate>20210114</creationdate><title>Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use</title><author>Magro, Bianca ; Zuccaro, Valentina ; Novelli, Luca ; Zileri, Lorenzo ; Celsa, Ciro ; Raimondi, Federico ; Gori, Mauro ; Cammà, Giulia ; Battaglia, Salvatore ; Genova, Vincenzo Giuseppe ; Paris, Laura ; Tacelli, Matteo ; Mancarella, Francesco Antonio ; Enea, Marco ; Attanasio, Massimo ; Senni, Michele ; Di Marco, Fabiano ; Lorini, Luca Ferdinando ; Fagiuoli, Stefano ; Bruno, Raffaele ; Cammà, Calogero ; Gasbarrini, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c7cf75196b20410183ad733b5e0af62dc95102ae5ae21cfc907ba420971584193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Antiviral drugs</topic><topic>Blood</topic><topic>Blood coagulation</topic><topic>Bone marrow</topic><topic>Bone marrow transplantation</topic><topic>Business</topic><topic>C-reactive protein</topic><topic>Cardiology</topic><topic>Child care</topic><topic>Children</topic><topic>Coagulation</topic><topic>Cohort Studies</topic><topic>Computed tomography</topic><topic>Computer programs</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - mortality</topic><topic>Creatine</topic><topic>Creatine kinase</topic><topic>Diabetes</topic><topic>Diagnostic systems</topic><topic>Drafting software</topic><topic>Drug dosages</topic><topic>Economic analysis</topic><topic>Economics</topic><topic>Editing</topic><topic>Epidemics</topic><topic>Female</topic><topic>Gastroenterology</topic><topic>Health promotion</topic><topic>Health risks</topic><topic>Hematology</topic><topic>Hepatology</topic><topic>Hospital Mortality</topic><topic>Hospital patients</topic><topic>Hospitalization</topic><topic>Hospitalization - statistics &amp; numerical data</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Internal medicine</topic><topic>Italy - epidemiology</topic><topic>Kinases</topic><topic>L-Lactate dehydrogenase</topic><topic>Laboratories</topic><topic>Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Male</topic><topic>Medical examination</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Middle Aged</topic><topic>Mobile Applications</topic><topic>Mortality</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Public health</topic><topic>Radiography</topic><topic>Respiratory diseases</topic><topic>Retrospective Studies</topic><topic>Risk analysis</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>SARS-CoV-2 - isolation &amp; purification</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Survival analysis</topic><topic>Transaminase</topic><topic>Transplantation</topic><topic>Transplants &amp; implants</topic><topic>Viral diseases</topic><topic>Web applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magro, Bianca</creatorcontrib><creatorcontrib>Zuccaro, Valentina</creatorcontrib><creatorcontrib>Novelli, Luca</creatorcontrib><creatorcontrib>Zileri, Lorenzo</creatorcontrib><creatorcontrib>Celsa, Ciro</creatorcontrib><creatorcontrib>Raimondi, Federico</creatorcontrib><creatorcontrib>Gori, Mauro</creatorcontrib><creatorcontrib>Cammà, Giulia</creatorcontrib><creatorcontrib>Battaglia, Salvatore</creatorcontrib><creatorcontrib>Genova, Vincenzo Giuseppe</creatorcontrib><creatorcontrib>Paris, Laura</creatorcontrib><creatorcontrib>Tacelli, Matteo</creatorcontrib><creatorcontrib>Mancarella, Francesco Antonio</creatorcontrib><creatorcontrib>Enea, Marco</creatorcontrib><creatorcontrib>Attanasio, Massimo</creatorcontrib><creatorcontrib>Senni, Michele</creatorcontrib><creatorcontrib>Di Marco, Fabiano</creatorcontrib><creatorcontrib>Lorini, Luca Ferdinando</creatorcontrib><creatorcontrib>Fagiuoli, Stefano</creatorcontrib><creatorcontrib>Bruno, Raffaele</creatorcontrib><creatorcontrib>Cammà, Calogero</creatorcontrib><creatorcontrib>Gasbarrini, Antonio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magro, Bianca</au><au>Zuccaro, Valentina</au><au>Novelli, Luca</au><au>Zileri, Lorenzo</au><au>Celsa, Ciro</au><au>Raimondi, Federico</au><au>Gori, Mauro</au><au>Cammà, Giulia</au><au>Battaglia, Salvatore</au><au>Genova, Vincenzo Giuseppe</au><au>Paris, Laura</au><au>Tacelli, Matteo</au><au>Mancarella, Francesco Antonio</au><au>Enea, Marco</au><au>Attanasio, Massimo</au><au>Senni, Michele</au><au>Di Marco, Fabiano</au><au>Lorini, Luca Ferdinando</au><au>Fagiuoli, Stefano</au><au>Bruno, Raffaele</au><au>Cammà, Calogero</au><au>Gasbarrini, Antonio</au><au>Di Gennaro, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0245281</spage><epage>e0245281</epage><pages>e0245281-e0245281</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. We enrolled 2191 consecutive hospitalized patients with COVID-19 from three Italian dedicated units (derivation cohort: 1810 consecutive patients from Bergamo and Pavia units; validation cohort: 381 consecutive patients from Rome unit). The outcome was in-hospital mortality. Fine and Gray competing risks multivariate model (with discharge as a competing event) was used to develop a prediction rule for in-hospital mortality. Discrimination and calibration were assessed by the area under the receiver operating characteristic curve (AUC) and by Brier score in both the derivation and validation cohorts. Seven variables were independent risk factors for in-hospital mortality: age (Hazard Ratio [HR] 1.08, 95% Confidence Interval [CI] 1.07-1.09), male sex (HR 1.62, 95%CI 1.30-2.00), duration of symptoms before hospital admission &lt;10 days (HR 1.72, 95%CI 1.39-2.12), diabetes (HR 1.21, 95%CI 1.02-1.45), coronary heart disease (HR 1.40 95% CI 1.09-1.80), chronic liver disease (HR 1.78, 95%CI 1.16-2.72), and lactate dehydrogenase levels at admission (HR 1.0003, 95%CI 1.0002-1.0005). The AUC was 0.822 (95%CI 0.722-0.922) in the derivation cohort and 0.820 (95%CI 0.724-0.920) in the validation cohort with good calibration. The prediction rule is freely available as a web-app (COVID-CALC: https://sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp). A validated simple clinical prediction rule can promptly and accurately assess the risk for in-hospital mortality, improving triage and the management of patients with COVID-19.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33444411</pmid><doi>10.1371/journal.pone.0245281</doi><tpages>e0245281</tpages><orcidid>https://orcid.org/0000-0002-5662-2162</orcidid><orcidid>https://orcid.org/0000-0002-2705-248X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-01, Vol.16 (1), p.e0245281-e0245281
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2478022617
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Aged
Aged, 80 and over
Antiviral drugs
Blood
Blood coagulation
Bone marrow
Bone marrow transplantation
Business
C-reactive protein
Cardiology
Child care
Children
Coagulation
Cohort Studies
Computed tomography
Computer programs
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 - mortality
Creatine
Creatine kinase
Diabetes
Diagnostic systems
Drafting software
Drug dosages
Economic analysis
Economics
Editing
Epidemics
Female
Gastroenterology
Health promotion
Health risks
Hematology
Hepatology
Hospital Mortality
Hospital patients
Hospitalization
Hospitalization - statistics & numerical data
Hospitals
Humans
Infectious diseases
Internal medicine
Italy - epidemiology
Kinases
L-Lactate dehydrogenase
Laboratories
Lactate dehydrogenase
Lactic acid
Male
Medical examination
Medicine
Medicine and Health Sciences
Methodology
Middle Aged
Mobile Applications
Mortality
Pandemics
Patients
Public health
Radiography
Respiratory diseases
Retrospective Studies
Risk analysis
Risk Assessment - methods
Risk Factors
ROC Curve
SARS-CoV-2 - isolation & purification
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Software
Statistical analysis
Statistics
Survival analysis
Transaminase
Transplantation
Transplants & implants
Viral diseases
Web applications
title Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20in-hospital%20mortality%20from%20Coronavirus%20Disease%202019:%20A%20simple%20validated%20app%20for%20clinical%20use&rft.jtitle=PloS%20one&rft.au=Magro,%20Bianca&rft.date=2021-01-14&rft.volume=16&rft.issue=1&rft.spage=e0245281&rft.epage=e0245281&rft.pages=e0245281-e0245281&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0245281&rft_dat=%3Cgale_plos_%3EA648383512%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478022617&rft_id=info:pmid/33444411&rft_galeid=A648383512&rft_doaj_id=oai_doaj_org_article_11a318d4a28c4395b7eb4169c6361da6&rfr_iscdi=true