Human walking in the real world: Interactions between terrain type, gait parameters, and energy expenditure

Humans often traverse real-world environments with a variety of surface irregularities and inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply outdoors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-01, Vol.16 (1), p.e0228682-e0228682
Hauptverfasser: Kowalsky, Daniel B, Rebula, John R, Ojeda, Lauro V, Adamczyk, Peter G, Kuo, Arthur D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0228682
container_issue 1
container_start_page e0228682
container_title PloS one
container_volume 16
creator Kowalsky, Daniel B
Rebula, John R
Ojeda, Lauro V
Adamczyk, Peter G
Kuo, Arthur D
description Humans often traverse real-world environments with a variety of surface irregularities and inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply outdoors. Walking can nevertheless be quantified by other means. In particular, the foot's trajectory in space can be reconstructed from foot-mounted inertial measurement units (IMUs), to yield measures of stride and associated variabilities. But it remains unknown whether such measures are related to metabolic energy expenditure. We therefore quantified the effect of five different outdoor terrains on foot motion (from IMUs) and net metabolic rate (from oxygen consumption) in healthy adults (N = 10; walking at 1.25 m/s). Energy expenditure increased significantly (P < 0.05) in the order Sidewalk, Dirt, Gravel, Grass, and Woodchips, with Woodchips about 27% costlier than Sidewalk. Terrain type also affected measures, particularly stride variability and virtual foot clearance (swing foot's lowest height above consecutive footfalls). In combination, such measures can also roughly predict metabolic cost (adjusted R2 = 0.52, partial least squares regression), and even discriminate between terrain types (10% reclassification error). Body-worn sensors can characterize how uneven terrain affects gait, gait variability, and metabolic cost in the real world.
doi_str_mv 10.1371/journal.pone.0228682
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2477594542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A648235265</galeid><doaj_id>oai_doaj_org_article_5a7ce61b8e4448949fd638b5a49e93e3</doaj_id><sourcerecordid>A648235265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c9279ced45055cd9552a6903e904a4ebdf3576bdf2ea999a01ec8eef0672a82c3</originalsourceid><addsrcrecordid>eNqNk21rFDEQxxdRbK1-A9EFQRR6ZzZPu_GFUIrag0LBp7dhLju7l3YvOZOsbb-9ud619KQvJC8mJL_5T2YyUxQvKzKtWF19OPdjcDBMV97hlFDayIY-KvYrxehEUsIe39vvFc9iPCdEsEbKp8UeY5ypRjT7xcXJuARXXsJwYV1fWlemBZYBYSgvfRjaj-XMJQxgkvUulnNMl4gZwhBgDV-v8LDswaZyBQGWmC_iYQmuLdFh6K9LvFqha20aAz4vnnQwRHyxtQfFzy-ffxyfTE7Pvs6Oj04nRiqaJkbRWhlsuSBCmFYJQUEqwlARDhznbcdELbOhCEopIBWaBrEjsqbQUMMOitcb3dXgo97WKWrK61ooLjjNxGxDtB7O9SrYJYRr7cHqmwMfeg0hWTOgFlAblNW8Qc55o7jqWsmauQCuUDFkWevTNto4X2Jr0KUAw47o7o2zC937P7puiKzyRxwU77YCwf8eMSa9tNHgMIBDP968uyEsV0Fm9M0_6MPZbakecgLWdT7HNWtRfSR5Q1mWEpmaPkDl1eLSmtxUnc3nOw7vdxwyk_Aq9TDGqGffv_0_e_Zrl317j13k1kuL6IfxpuN2Qb4BTfAxBuzuilwRvZ6J22ro9Uzo7Uxkt1f3P-jO6XYI2F8Bggea</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477594542</pqid></control><display><type>article</type><title>Human walking in the real world: Interactions between terrain type, gait parameters, and energy expenditure</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kowalsky, Daniel B ; Rebula, John R ; Ojeda, Lauro V ; Adamczyk, Peter G ; Kuo, Arthur D</creator><contributor>Kao, Pei-Chun</contributor><creatorcontrib>Kowalsky, Daniel B ; Rebula, John R ; Ojeda, Lauro V ; Adamczyk, Peter G ; Kuo, Arthur D ; Kao, Pei-Chun</creatorcontrib><description>Humans often traverse real-world environments with a variety of surface irregularities and inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply outdoors. Walking can nevertheless be quantified by other means. In particular, the foot's trajectory in space can be reconstructed from foot-mounted inertial measurement units (IMUs), to yield measures of stride and associated variabilities. But it remains unknown whether such measures are related to metabolic energy expenditure. We therefore quantified the effect of five different outdoor terrains on foot motion (from IMUs) and net metabolic rate (from oxygen consumption) in healthy adults (N = 10; walking at 1.25 m/s). Energy expenditure increased significantly (P &lt; 0.05) in the order Sidewalk, Dirt, Gravel, Grass, and Woodchips, with Woodchips about 27% costlier than Sidewalk. Terrain type also affected measures, particularly stride variability and virtual foot clearance (swing foot's lowest height above consecutive footfalls). In combination, such measures can also roughly predict metabolic cost (adjusted R2 = 0.52, partial least squares regression), and even discriminate between terrain types (10% reclassification error). Body-worn sensors can characterize how uneven terrain affects gait, gait variability, and metabolic cost in the real world.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0228682</identifier><identifier>PMID: 33439858</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acceleration ; Adolescent ; Adult ; Angular velocity ; Balance ; Bioenergetics ; Biology and Life Sciences ; Biomechanical Phenomena - physiology ; Biomechanics ; Biomedical engineering ; Carbon dioxide ; Computer programs ; Data analysis ; Drafting software ; Editing ; Elevation ; Energy ; Energy costs ; Energy expenditure ; Energy metabolism ; Energy Metabolism - physiology ; Engineering and Technology ; Engineering research ; Environmental aspects ; Experiments ; Feet ; Female ; Fitness equipment ; Foot - physiology ; Gait ; Gait - physiology ; Gait recognition ; Global positioning systems ; GPS ; Humans ; Laboratories ; Male ; Mechanical engineering ; Medicine and Health Sciences ; Metabolic rate ; Metabolism ; Middle Aged ; Oxygen ; Oxygen consumption ; Oxygen Consumption - physiology ; Physical Sciences ; Physiological aspects ; Research and Analysis Methods ; Reviews ; Software ; Terrain ; Visualization ; Walking ; Walking - physiology ; Young Adult</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0228682-e0228682</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Kowalsky et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Kowalsky et al 2021 Kowalsky et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c9279ced45055cd9552a6903e904a4ebdf3576bdf2ea999a01ec8eef0672a82c3</citedby><cites>FETCH-LOGICAL-c692t-c9279ced45055cd9552a6903e904a4ebdf3576bdf2ea999a01ec8eef0672a82c3</cites><orcidid>0000-0001-5233-9709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806134/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806134/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33439858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kao, Pei-Chun</contributor><creatorcontrib>Kowalsky, Daniel B</creatorcontrib><creatorcontrib>Rebula, John R</creatorcontrib><creatorcontrib>Ojeda, Lauro V</creatorcontrib><creatorcontrib>Adamczyk, Peter G</creatorcontrib><creatorcontrib>Kuo, Arthur D</creatorcontrib><title>Human walking in the real world: Interactions between terrain type, gait parameters, and energy expenditure</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Humans often traverse real-world environments with a variety of surface irregularities and inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply outdoors. Walking can nevertheless be quantified by other means. In particular, the foot's trajectory in space can be reconstructed from foot-mounted inertial measurement units (IMUs), to yield measures of stride and associated variabilities. But it remains unknown whether such measures are related to metabolic energy expenditure. We therefore quantified the effect of five different outdoor terrains on foot motion (from IMUs) and net metabolic rate (from oxygen consumption) in healthy adults (N = 10; walking at 1.25 m/s). Energy expenditure increased significantly (P &lt; 0.05) in the order Sidewalk, Dirt, Gravel, Grass, and Woodchips, with Woodchips about 27% costlier than Sidewalk. Terrain type also affected measures, particularly stride variability and virtual foot clearance (swing foot's lowest height above consecutive footfalls). In combination, such measures can also roughly predict metabolic cost (adjusted R2 = 0.52, partial least squares regression), and even discriminate between terrain types (10% reclassification error). Body-worn sensors can characterize how uneven terrain affects gait, gait variability, and metabolic cost in the real world.</description><subject>Acceleration</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Angular velocity</subject><subject>Balance</subject><subject>Bioenergetics</subject><subject>Biology and Life Sciences</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>Biomedical engineering</subject><subject>Carbon dioxide</subject><subject>Computer programs</subject><subject>Data analysis</subject><subject>Drafting software</subject><subject>Editing</subject><subject>Elevation</subject><subject>Energy</subject><subject>Energy costs</subject><subject>Energy expenditure</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Engineering and Technology</subject><subject>Engineering research</subject><subject>Environmental aspects</subject><subject>Experiments</subject><subject>Feet</subject><subject>Female</subject><subject>Fitness equipment</subject><subject>Foot - physiology</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Gait recognition</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Male</subject><subject>Mechanical engineering</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>Oxygen Consumption - physiology</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Reviews</subject><subject>Software</subject><subject>Terrain</subject><subject>Visualization</subject><subject>Walking</subject><subject>Walking - physiology</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21rFDEQxxdRbK1-A9EFQRR6ZzZPu_GFUIrag0LBp7dhLju7l3YvOZOsbb-9ud619KQvJC8mJL_5T2YyUxQvKzKtWF19OPdjcDBMV97hlFDayIY-KvYrxehEUsIe39vvFc9iPCdEsEbKp8UeY5ypRjT7xcXJuARXXsJwYV1fWlemBZYBYSgvfRjaj-XMJQxgkvUulnNMl4gZwhBgDV-v8LDswaZyBQGWmC_iYQmuLdFh6K9LvFqha20aAz4vnnQwRHyxtQfFzy-ffxyfTE7Pvs6Oj04nRiqaJkbRWhlsuSBCmFYJQUEqwlARDhznbcdELbOhCEopIBWaBrEjsqbQUMMOitcb3dXgo97WKWrK61ooLjjNxGxDtB7O9SrYJYRr7cHqmwMfeg0hWTOgFlAblNW8Qc55o7jqWsmauQCuUDFkWevTNto4X2Jr0KUAw47o7o2zC937P7puiKzyRxwU77YCwf8eMSa9tNHgMIBDP968uyEsV0Fm9M0_6MPZbakecgLWdT7HNWtRfSR5Q1mWEpmaPkDl1eLSmtxUnc3nOw7vdxwyk_Aq9TDGqGffv_0_e_Zrl317j13k1kuL6IfxpuN2Qb4BTfAxBuzuilwRvZ6J22ro9Uzo7Uxkt1f3P-jO6XYI2F8Bggea</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Kowalsky, Daniel B</creator><creator>Rebula, John R</creator><creator>Ojeda, Lauro V</creator><creator>Adamczyk, Peter G</creator><creator>Kuo, Arthur D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5233-9709</orcidid></search><sort><creationdate>20210113</creationdate><title>Human walking in the real world: Interactions between terrain type, gait parameters, and energy expenditure</title><author>Kowalsky, Daniel B ; Rebula, John R ; Ojeda, Lauro V ; Adamczyk, Peter G ; Kuo, Arthur D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c9279ced45055cd9552a6903e904a4ebdf3576bdf2ea999a01ec8eef0672a82c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Angular velocity</topic><topic>Balance</topic><topic>Bioenergetics</topic><topic>Biology and Life Sciences</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>Biomedical engineering</topic><topic>Carbon dioxide</topic><topic>Computer programs</topic><topic>Data analysis</topic><topic>Drafting software</topic><topic>Editing</topic><topic>Elevation</topic><topic>Energy</topic><topic>Energy costs</topic><topic>Energy expenditure</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Engineering and Technology</topic><topic>Engineering research</topic><topic>Environmental aspects</topic><topic>Experiments</topic><topic>Feet</topic><topic>Female</topic><topic>Fitness equipment</topic><topic>Foot - physiology</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Gait recognition</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Male</topic><topic>Mechanical engineering</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>Oxygen Consumption - physiology</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Reviews</topic><topic>Software</topic><topic>Terrain</topic><topic>Visualization</topic><topic>Walking</topic><topic>Walking - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalsky, Daniel B</creatorcontrib><creatorcontrib>Rebula, John R</creatorcontrib><creatorcontrib>Ojeda, Lauro V</creatorcontrib><creatorcontrib>Adamczyk, Peter G</creatorcontrib><creatorcontrib>Kuo, Arthur D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalsky, Daniel B</au><au>Rebula, John R</au><au>Ojeda, Lauro V</au><au>Adamczyk, Peter G</au><au>Kuo, Arthur D</au><au>Kao, Pei-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human walking in the real world: Interactions between terrain type, gait parameters, and energy expenditure</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0228682</spage><epage>e0228682</epage><pages>e0228682-e0228682</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Humans often traverse real-world environments with a variety of surface irregularities and inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply outdoors. Walking can nevertheless be quantified by other means. In particular, the foot's trajectory in space can be reconstructed from foot-mounted inertial measurement units (IMUs), to yield measures of stride and associated variabilities. But it remains unknown whether such measures are related to metabolic energy expenditure. We therefore quantified the effect of five different outdoor terrains on foot motion (from IMUs) and net metabolic rate (from oxygen consumption) in healthy adults (N = 10; walking at 1.25 m/s). Energy expenditure increased significantly (P &lt; 0.05) in the order Sidewalk, Dirt, Gravel, Grass, and Woodchips, with Woodchips about 27% costlier than Sidewalk. Terrain type also affected measures, particularly stride variability and virtual foot clearance (swing foot's lowest height above consecutive footfalls). In combination, such measures can also roughly predict metabolic cost (adjusted R2 = 0.52, partial least squares regression), and even discriminate between terrain types (10% reclassification error). Body-worn sensors can characterize how uneven terrain affects gait, gait variability, and metabolic cost in the real world.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33439858</pmid><doi>10.1371/journal.pone.0228682</doi><tpages>e0228682</tpages><orcidid>https://orcid.org/0000-0001-5233-9709</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-01, Vol.16 (1), p.e0228682-e0228682
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2477594542
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acceleration
Adolescent
Adult
Angular velocity
Balance
Bioenergetics
Biology and Life Sciences
Biomechanical Phenomena - physiology
Biomechanics
Biomedical engineering
Carbon dioxide
Computer programs
Data analysis
Drafting software
Editing
Elevation
Energy
Energy costs
Energy expenditure
Energy metabolism
Energy Metabolism - physiology
Engineering and Technology
Engineering research
Environmental aspects
Experiments
Feet
Female
Fitness equipment
Foot - physiology
Gait
Gait - physiology
Gait recognition
Global positioning systems
GPS
Humans
Laboratories
Male
Mechanical engineering
Medicine and Health Sciences
Metabolic rate
Metabolism
Middle Aged
Oxygen
Oxygen consumption
Oxygen Consumption - physiology
Physical Sciences
Physiological aspects
Research and Analysis Methods
Reviews
Software
Terrain
Visualization
Walking
Walking - physiology
Young Adult
title Human walking in the real world: Interactions between terrain type, gait parameters, and energy expenditure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20walking%20in%20the%20real%20world:%20Interactions%20between%20terrain%20type,%20gait%20parameters,%20and%20energy%20expenditure&rft.jtitle=PloS%20one&rft.au=Kowalsky,%20Daniel%20B&rft.date=2021-01-13&rft.volume=16&rft.issue=1&rft.spage=e0228682&rft.epage=e0228682&rft.pages=e0228682-e0228682&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0228682&rft_dat=%3Cgale_plos_%3EA648235265%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477594542&rft_id=info:pmid/33439858&rft_galeid=A648235265&rft_doaj_id=oai_doaj_org_article_5a7ce61b8e4448949fd638b5a49e93e3&rfr_iscdi=true