Subject-independent decoding of affective states using functional near-infrared spectroscopy

Affective decoding is the inference of human emotional states using brain signal measurements. This approach is crucial to develop new therapeutic approaches for psychiatric rehabilitation, such as affective neurofeedback protocols. To reduce the training duration and optimize the clinical outputs,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-01, Vol.16 (1), p.e0244840-e0244840
Hauptverfasser: Trambaiolli, Lucas R, Tossato, Juliana, Cravo, André M, Biazoli, Jr, Claudinei E, Sato, João R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0244840
container_issue 1
container_start_page e0244840
container_title PloS one
container_volume 16
creator Trambaiolli, Lucas R
Tossato, Juliana
Cravo, André M
Biazoli, Jr, Claudinei E
Sato, João R
description Affective decoding is the inference of human emotional states using brain signal measurements. This approach is crucial to develop new therapeutic approaches for psychiatric rehabilitation, such as affective neurofeedback protocols. To reduce the training duration and optimize the clinical outputs, an ideal clinical neurofeedback could be trained using data from an independent group of volunteers before being used by new patients. Here, we investigated if this subject-independent design of affective decoding can be achieved using functional near-infrared spectroscopy (fNIRS) signals from frontal and occipital areas. For this purpose, a linear discriminant analysis classifier was first trained in a dataset (49 participants, 24.65±3.23 years) and then tested in a completely independent one (20 participants, 24.00±3.92 years). Significant balanced accuracies between classes were found for positive vs. negative (64.50 ± 12.03%, p
doi_str_mv 10.1371/journal.pone.0244840
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2476219349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650815125</galeid><doaj_id>oai_doaj_org_article_44805f4e46b845cdb44024723aae1fe8</doaj_id><sourcerecordid>A650815125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6d042fca9c3359bbdb533abed20db9b5310d2e159a29bb1c0e48e1658af93d1c3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7kW_gWhBEH2YMddeXoRl8TKwsOCqT0JIk5OZDp2mm7SL--331OkuU9kHKbRpzu_8k_xzTpK8omRJeU4_bv0QWt0sO9_CkjAhCkGeJMe05GyRMcKfHoyPkpMYt4RIXmTZ8-SIc0FpQfPj5PfVUG3B9Iu6tdABvto-tWC8rdt16l2qncNwfQNp7HUPMR3iGHFDi7MeN5C2oAOmu6AD2DR2iAcfje9uXyTPnG4ivJy-p8nPL59_nH9bXFx-XZ2fXSxMVrJ-kVkimDO6NJzLsqpsJTnXFVhGbFXiDyWWAZWlZhilhoAogGay0K7klhp-mrzZ63aNj2oyJiom8oyhB6JEYrUnrNdb1YV6p8Ot8rpWfyd8WCsd-to0oNBIIp0AkVWFkMZWQqC7OeNaA3VQoNanabWh2oE16FjQzUx0HmnrjVr7G5XnJWE5R4H3k0Dw1wPEXu3qaKBpdAt-2O9bZrmQEtG3_6CPn26i1hoPgFfhcV0ziqqzTJKCSspGreUjFD4WdrXBKnI1zs8SPswSkOnhT7_WQ4xqdfX9_9nLX3P23QG7Ad30m-ibYaynOAfFHjRYUDGAezCZEjU2wb0bamwCNTUBpr0-vKCHpPuq53dZfgLo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476219349</pqid></control><display><type>article</type><title>Subject-independent decoding of affective states using functional near-infrared spectroscopy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Trambaiolli, Lucas R ; Tossato, Juliana ; Cravo, André M ; Biazoli, Jr, Claudinei E ; Sato, João R</creator><contributor>Wang, Zhishun</contributor><creatorcontrib>Trambaiolli, Lucas R ; Tossato, Juliana ; Cravo, André M ; Biazoli, Jr, Claudinei E ; Sato, João R ; Wang, Zhishun</creatorcontrib><description>Affective decoding is the inference of human emotional states using brain signal measurements. This approach is crucial to develop new therapeutic approaches for psychiatric rehabilitation, such as affective neurofeedback protocols. To reduce the training duration and optimize the clinical outputs, an ideal clinical neurofeedback could be trained using data from an independent group of volunteers before being used by new patients. Here, we investigated if this subject-independent design of affective decoding can be achieved using functional near-infrared spectroscopy (fNIRS) signals from frontal and occipital areas. For this purpose, a linear discriminant analysis classifier was first trained in a dataset (49 participants, 24.65±3.23 years) and then tested in a completely independent one (20 participants, 24.00±3.92 years). Significant balanced accuracies between classes were found for positive vs. negative (64.50 ± 12.03%, p&lt;0.01) and negative vs. neutral (68.25 ± 12.97%, p&lt;0.01) affective states discrimination during a reactive block consisting in viewing affective-loaded images. For an active block, in which volunteers were instructed to recollect personal affective experiences, significant accuracy was found for positive vs. neutral affect classification (71.25 ± 18.02%, p&lt;0.01). In this last case, only three fNIRS channels were enough to discriminate between neutral and positive affective states. Although more research is needed, for example focusing on better combinations of features and classifiers, our results highlight fNIRS as a possible technique for subject-independent affective decoding, reaching significant classification accuracies of emotional states using only a few but biologically relevant features.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0244840</identifier><identifier>PMID: 33411817</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Affect (Psychology) ; Affect - physiology ; Biofeedback training ; Biology and Life Sciences ; Brain - diagnostic imaging ; Brain research ; Brain-Computer Interfaces - psychology ; Classification ; Classifiers ; Cognition &amp; reasoning ; Computer and Information Sciences ; Datasets ; Design ; Discriminant Analysis ; Emotional behavior ; Emotional factors ; Emotions ; Emotions - physiology ; Engineering and Technology ; Ethics ; Feedback ; Female ; Frontal Lobe - diagnostic imaging ; Functional Neuroimaging - methods ; Humans ; I.R. radiation ; Infrared spectra ; Infrared spectroscopy ; Male ; Mathematics ; Medical imaging ; Medical research ; Medicine and Health Sciences ; Methods ; Near infrared radiation ; Near infrared spectroscopy ; Neural networks ; Neurofeedback - methods ; Neuroimaging ; Neurosciences ; Occipital Lobe - diagnostic imaging ; Physical Sciences ; Rehabilitation ; Research and Analysis Methods ; Sensors ; Social Sciences ; Spectroscopy, Near-Infrared - methods ; Spectrum analysis ; Values</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0244840-e0244840</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Trambaiolli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Trambaiolli et al 2021 Trambaiolli et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6d042fca9c3359bbdb533abed20db9b5310d2e159a29bb1c0e48e1658af93d1c3</citedby><cites>FETCH-LOGICAL-c692t-6d042fca9c3359bbdb533abed20db9b5310d2e159a29bb1c0e48e1658af93d1c3</cites><orcidid>0000-0001-7824-1929 ; 0000-0003-2483-4109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790273/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790273/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33411817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Zhishun</contributor><creatorcontrib>Trambaiolli, Lucas R</creatorcontrib><creatorcontrib>Tossato, Juliana</creatorcontrib><creatorcontrib>Cravo, André M</creatorcontrib><creatorcontrib>Biazoli, Jr, Claudinei E</creatorcontrib><creatorcontrib>Sato, João R</creatorcontrib><title>Subject-independent decoding of affective states using functional near-infrared spectroscopy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Affective decoding is the inference of human emotional states using brain signal measurements. This approach is crucial to develop new therapeutic approaches for psychiatric rehabilitation, such as affective neurofeedback protocols. To reduce the training duration and optimize the clinical outputs, an ideal clinical neurofeedback could be trained using data from an independent group of volunteers before being used by new patients. Here, we investigated if this subject-independent design of affective decoding can be achieved using functional near-infrared spectroscopy (fNIRS) signals from frontal and occipital areas. For this purpose, a linear discriminant analysis classifier was first trained in a dataset (49 participants, 24.65±3.23 years) and then tested in a completely independent one (20 participants, 24.00±3.92 years). Significant balanced accuracies between classes were found for positive vs. negative (64.50 ± 12.03%, p&lt;0.01) and negative vs. neutral (68.25 ± 12.97%, p&lt;0.01) affective states discrimination during a reactive block consisting in viewing affective-loaded images. For an active block, in which volunteers were instructed to recollect personal affective experiences, significant accuracy was found for positive vs. neutral affect classification (71.25 ± 18.02%, p&lt;0.01). In this last case, only three fNIRS channels were enough to discriminate between neutral and positive affective states. Although more research is needed, for example focusing on better combinations of features and classifiers, our results highlight fNIRS as a possible technique for subject-independent affective decoding, reaching significant classification accuracies of emotional states using only a few but biologically relevant features.</description><subject>Adult</subject><subject>Affect (Psychology)</subject><subject>Affect - physiology</subject><subject>Biofeedback training</subject><subject>Biology and Life Sciences</subject><subject>Brain - diagnostic imaging</subject><subject>Brain research</subject><subject>Brain-Computer Interfaces - psychology</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Cognition &amp; reasoning</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Design</subject><subject>Discriminant Analysis</subject><subject>Emotional behavior</subject><subject>Emotional factors</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>Engineering and Technology</subject><subject>Ethics</subject><subject>Feedback</subject><subject>Female</subject><subject>Frontal Lobe - diagnostic imaging</subject><subject>Functional Neuroimaging - methods</subject><subject>Humans</subject><subject>I.R. radiation</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Male</subject><subject>Mathematics</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Near infrared radiation</subject><subject>Near infrared spectroscopy</subject><subject>Neural networks</subject><subject>Neurofeedback - methods</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Occipital Lobe - diagnostic imaging</subject><subject>Physical Sciences</subject><subject>Rehabilitation</subject><subject>Research and Analysis Methods</subject><subject>Sensors</subject><subject>Social Sciences</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Spectrum analysis</subject><subject>Values</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7kW_gWhBEH2YMddeXoRl8TKwsOCqT0JIk5OZDp2mm7SL--331OkuU9kHKbRpzu_8k_xzTpK8omRJeU4_bv0QWt0sO9_CkjAhCkGeJMe05GyRMcKfHoyPkpMYt4RIXmTZ8-SIc0FpQfPj5PfVUG3B9Iu6tdABvto-tWC8rdt16l2qncNwfQNp7HUPMR3iGHFDi7MeN5C2oAOmu6AD2DR2iAcfje9uXyTPnG4ivJy-p8nPL59_nH9bXFx-XZ2fXSxMVrJ-kVkimDO6NJzLsqpsJTnXFVhGbFXiDyWWAZWlZhilhoAogGay0K7klhp-mrzZ63aNj2oyJiom8oyhB6JEYrUnrNdb1YV6p8Ot8rpWfyd8WCsd-to0oNBIIp0AkVWFkMZWQqC7OeNaA3VQoNanabWh2oE16FjQzUx0HmnrjVr7G5XnJWE5R4H3k0Dw1wPEXu3qaKBpdAt-2O9bZrmQEtG3_6CPn26i1hoPgFfhcV0ziqqzTJKCSspGreUjFD4WdrXBKnI1zs8SPswSkOnhT7_WQ4xqdfX9_9nLX3P23QG7Ad30m-ibYaynOAfFHjRYUDGAezCZEjU2wb0bamwCNTUBpr0-vKCHpPuq53dZfgLo</recordid><startdate>20210107</startdate><enddate>20210107</enddate><creator>Trambaiolli, Lucas R</creator><creator>Tossato, Juliana</creator><creator>Cravo, André M</creator><creator>Biazoli, Jr, Claudinei E</creator><creator>Sato, João R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7824-1929</orcidid><orcidid>https://orcid.org/0000-0003-2483-4109</orcidid></search><sort><creationdate>20210107</creationdate><title>Subject-independent decoding of affective states using functional near-infrared spectroscopy</title><author>Trambaiolli, Lucas R ; Tossato, Juliana ; Cravo, André M ; Biazoli, Jr, Claudinei E ; Sato, João R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6d042fca9c3359bbdb533abed20db9b5310d2e159a29bb1c0e48e1658af93d1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Affect (Psychology)</topic><topic>Affect - physiology</topic><topic>Biofeedback training</topic><topic>Biology and Life Sciences</topic><topic>Brain - diagnostic imaging</topic><topic>Brain research</topic><topic>Brain-Computer Interfaces - psychology</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Cognition &amp; reasoning</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Design</topic><topic>Discriminant Analysis</topic><topic>Emotional behavior</topic><topic>Emotional factors</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>Engineering and Technology</topic><topic>Ethics</topic><topic>Feedback</topic><topic>Female</topic><topic>Frontal Lobe - diagnostic imaging</topic><topic>Functional Neuroimaging - methods</topic><topic>Humans</topic><topic>I.R. radiation</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Male</topic><topic>Mathematics</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Near infrared radiation</topic><topic>Near infrared spectroscopy</topic><topic>Neural networks</topic><topic>Neurofeedback - methods</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Occipital Lobe - diagnostic imaging</topic><topic>Physical Sciences</topic><topic>Rehabilitation</topic><topic>Research and Analysis Methods</topic><topic>Sensors</topic><topic>Social Sciences</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Spectrum analysis</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trambaiolli, Lucas R</creatorcontrib><creatorcontrib>Tossato, Juliana</creatorcontrib><creatorcontrib>Cravo, André M</creatorcontrib><creatorcontrib>Biazoli, Jr, Claudinei E</creatorcontrib><creatorcontrib>Sato, João R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trambaiolli, Lucas R</au><au>Tossato, Juliana</au><au>Cravo, André M</au><au>Biazoli, Jr, Claudinei E</au><au>Sato, João R</au><au>Wang, Zhishun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subject-independent decoding of affective states using functional near-infrared spectroscopy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-07</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0244840</spage><epage>e0244840</epage><pages>e0244840-e0244840</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Affective decoding is the inference of human emotional states using brain signal measurements. This approach is crucial to develop new therapeutic approaches for psychiatric rehabilitation, such as affective neurofeedback protocols. To reduce the training duration and optimize the clinical outputs, an ideal clinical neurofeedback could be trained using data from an independent group of volunteers before being used by new patients. Here, we investigated if this subject-independent design of affective decoding can be achieved using functional near-infrared spectroscopy (fNIRS) signals from frontal and occipital areas. For this purpose, a linear discriminant analysis classifier was first trained in a dataset (49 participants, 24.65±3.23 years) and then tested in a completely independent one (20 participants, 24.00±3.92 years). Significant balanced accuracies between classes were found for positive vs. negative (64.50 ± 12.03%, p&lt;0.01) and negative vs. neutral (68.25 ± 12.97%, p&lt;0.01) affective states discrimination during a reactive block consisting in viewing affective-loaded images. For an active block, in which volunteers were instructed to recollect personal affective experiences, significant accuracy was found for positive vs. neutral affect classification (71.25 ± 18.02%, p&lt;0.01). In this last case, only three fNIRS channels were enough to discriminate between neutral and positive affective states. Although more research is needed, for example focusing on better combinations of features and classifiers, our results highlight fNIRS as a possible technique for subject-independent affective decoding, reaching significant classification accuracies of emotional states using only a few but biologically relevant features.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33411817</pmid><doi>10.1371/journal.pone.0244840</doi><tpages>e0244840</tpages><orcidid>https://orcid.org/0000-0001-7824-1929</orcidid><orcidid>https://orcid.org/0000-0003-2483-4109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-01, Vol.16 (1), p.e0244840-e0244840
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2476219349
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Affect (Psychology)
Affect - physiology
Biofeedback training
Biology and Life Sciences
Brain - diagnostic imaging
Brain research
Brain-Computer Interfaces - psychology
Classification
Classifiers
Cognition & reasoning
Computer and Information Sciences
Datasets
Design
Discriminant Analysis
Emotional behavior
Emotional factors
Emotions
Emotions - physiology
Engineering and Technology
Ethics
Feedback
Female
Frontal Lobe - diagnostic imaging
Functional Neuroimaging - methods
Humans
I.R. radiation
Infrared spectra
Infrared spectroscopy
Male
Mathematics
Medical imaging
Medical research
Medicine and Health Sciences
Methods
Near infrared radiation
Near infrared spectroscopy
Neural networks
Neurofeedback - methods
Neuroimaging
Neurosciences
Occipital Lobe - diagnostic imaging
Physical Sciences
Rehabilitation
Research and Analysis Methods
Sensors
Social Sciences
Spectroscopy, Near-Infrared - methods
Spectrum analysis
Values
title Subject-independent decoding of affective states using functional near-infrared spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subject-independent%20decoding%20of%20affective%20states%20using%20functional%20near-infrared%20spectroscopy&rft.jtitle=PloS%20one&rft.au=Trambaiolli,%20Lucas%20R&rft.date=2021-01-07&rft.volume=16&rft.issue=1&rft.spage=e0244840&rft.epage=e0244840&rft.pages=e0244840-e0244840&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0244840&rft_dat=%3Cgale_plos_%3EA650815125%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476219349&rft_id=info:pmid/33411817&rft_galeid=A650815125&rft_doaj_id=oai_doaj_org_article_44805f4e46b845cdb44024723aae1fe8&rfr_iscdi=true