Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya

The obstacle to optimal utilization of biogas technology is poor understanding of biogas microbiomes diversities over a wide geographical coverage. We performed random shotgun sequencing on twelve environmental samples. Randomized complete block design was utilized to assign the twelve treatments to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-01, Vol.16 (1), p.e0244755-e0244755
Hauptverfasser: Muturi, Samuel Mwangangi, Muthui, Lucy Wangui, Njogu, Paul Mwangi, Onguso, Justus Mong'are, Wachira, Francis Nyamu, Opiyo, Stephen Obol, Pelle, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0244755
container_issue 1
container_start_page e0244755
container_title PloS one
container_volume 16
creator Muturi, Samuel Mwangangi
Muthui, Lucy Wangui
Njogu, Paul Mwangi
Onguso, Justus Mong'are
Wachira, Francis Nyamu
Opiyo, Stephen Obol
Pelle, Roger
description The obstacle to optimal utilization of biogas technology is poor understanding of biogas microbiomes diversities over a wide geographical coverage. We performed random shotgun sequencing on twelve environmental samples. Randomized complete block design was utilized to assign the twelve treatments to four blocks, within eastern and central regions of Kenya. We obtained 42 million paired-end reads that were annotated against sixteen reference databases using two ENVO ontologies, prior to β-diversity studies. We identified 37 phyla, 65 classes and 132 orders. Bacteria dominated and comprised 28 phyla, 42 classes and 92 orders, conveying substrate's versatility in the treatments. Though, Fungi and Archaea comprised 5 phyla, the Fungi were richer; suggesting the importance of hydrolysis and fermentation in biogas production. High β-diversity within the taxa was largely linked to communities' metabolic capabilities. Clostridiales and Bacteroidales, the most prevalent guilds, metabolize organic macromolecules. The identified Cytophagales, Alteromonadales, Flavobacteriales, Fusobacteriales, Deferribacterales, Elusimicrobiales, Chlamydiales, Synergistales to mention but few, also catabolize macromolecules into smaller substrates to conserve energy. Furthermore, δ-Proteobacteria, Gloeobacteria and Clostridia affiliates syntrophically regulate PH2 and reduce metal to provide reducing equivalents. Methanomicrobiales and other Methanomicrobia species were the most prevalence Archaea, converting formate, CO2(g), acetate and methylated substrates into CH4(g). Thermococci, Thermoplasmata and Thermoprotei were among the sulfur and other metal reducing Archaea that contributed to redox balancing and other metabolism within treatments. Eukaryotes, mainly fungi were the least abundant guild, comprising largely Ascomycota and Basidiomycota species. Chytridiomycetes, Blastocladiomycetes and Mortierellomycetes were among the rare species, suggesting their metabolic and substrates limitations. Generally, we observed that environmental and treatment perturbations influenced communities' abundance, β-diversity and reactor performance largely through stochastic effect. Understanding diversity of biogas microbiomes over wide environmental variables and its' productivity provided insights into better management strategies that ameliorate biochemical limitations to effective biogas production.
doi_str_mv 10.1371/journal.pone.0244755
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2475079030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A647445205</galeid><doaj_id>oai_doaj_org_article_bac4e5b8ae6f437d94537ea87069dc9b</doaj_id><sourcerecordid>A647445205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-767dc6eb2bbfc379f09470a5912ce6563306cc35e343da2c81a64d16c3af59c03</originalsourceid><addsrcrecordid>eNqNk12PEyEUhidG467Vf2CUxMToRSszMFBuTDYbPxrXbOLXLWGYMy0NhQpMtf9eamc3HbMXhgsI87wvw8s5RfG0xLOS8PLN2vfBKTvbegczXFHK6_pecV4KUk1Zhcn9k_VZ8SjGNcY1mTP2sDgjhIiaCXxe2M-Q1BKc3xgdUezDDvaod0HtwEbUmh2EaNIe-Q41xi9VRBkMPq83ENEvk1Zo6xO4ZJRFySNwK-U0oG3wba-T2R3ExqFP4PbqcfGgUzbCk2GeFN_fv_t2-XF6df1hcXlxNdVMVGnKGW81g6Zqmk4TLjosKMeqFmWlgdWMEMy0JjUQSlpV6XmpGG1LponqaqExmRTPj75b66McgoqyyhFhLjA5EIsj0Xq1lttgNirspVdG_t3wYSlVSEZbkI3SFOpmroB1lPBW0JpwUHOOmWi1aLLX2-G0vtlAq3MYQdmR6fiLMyu59DvJ-bxkvMwGrwaD4H_2EJPcmKjBWuXA98f_JoKVvMroi3_Qu283UEuVL2Bc5_O5-mAqLxjllNZVLoVJMbuDyqOF_Ma5qjqT90eC1yNBZhL8TkvVxygXX7_8P3v9Y8y-PGFXoGxaRW_7ZLyLY5AewVyBMQbobkMusTw0xU0a8tAUcmiKLHt2-kC3opsuIH8A0yAJMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475079030</pqid></control><display><type>article</type><title>Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Muturi, Samuel Mwangangi ; Muthui, Lucy Wangui ; Njogu, Paul Mwangi ; Onguso, Justus Mong'are ; Wachira, Francis Nyamu ; Opiyo, Stephen Obol ; Pelle, Roger</creator><contributor>Abdullah, Bawadi</contributor><creatorcontrib>Muturi, Samuel Mwangangi ; Muthui, Lucy Wangui ; Njogu, Paul Mwangi ; Onguso, Justus Mong'are ; Wachira, Francis Nyamu ; Opiyo, Stephen Obol ; Pelle, Roger ; Abdullah, Bawadi</creatorcontrib><description>The obstacle to optimal utilization of biogas technology is poor understanding of biogas microbiomes diversities over a wide geographical coverage. We performed random shotgun sequencing on twelve environmental samples. Randomized complete block design was utilized to assign the twelve treatments to four blocks, within eastern and central regions of Kenya. We obtained 42 million paired-end reads that were annotated against sixteen reference databases using two ENVO ontologies, prior to β-diversity studies. We identified 37 phyla, 65 classes and 132 orders. Bacteria dominated and comprised 28 phyla, 42 classes and 92 orders, conveying substrate's versatility in the treatments. Though, Fungi and Archaea comprised 5 phyla, the Fungi were richer; suggesting the importance of hydrolysis and fermentation in biogas production. High β-diversity within the taxa was largely linked to communities' metabolic capabilities. Clostridiales and Bacteroidales, the most prevalent guilds, metabolize organic macromolecules. The identified Cytophagales, Alteromonadales, Flavobacteriales, Fusobacteriales, Deferribacterales, Elusimicrobiales, Chlamydiales, Synergistales to mention but few, also catabolize macromolecules into smaller substrates to conserve energy. Furthermore, δ-Proteobacteria, Gloeobacteria and Clostridia affiliates syntrophically regulate PH2 and reduce metal to provide reducing equivalents. Methanomicrobiales and other Methanomicrobia species were the most prevalence Archaea, converting formate, CO2(g), acetate and methylated substrates into CH4(g). Thermococci, Thermoplasmata and Thermoprotei were among the sulfur and other metal reducing Archaea that contributed to redox balancing and other metabolism within treatments. Eukaryotes, mainly fungi were the least abundant guild, comprising largely Ascomycota and Basidiomycota species. Chytridiomycetes, Blastocladiomycetes and Mortierellomycetes were among the rare species, suggesting their metabolic and substrates limitations. Generally, we observed that environmental and treatment perturbations influenced communities' abundance, β-diversity and reactor performance largely through stochastic effect. Understanding diversity of biogas microbiomes over wide environmental variables and its' productivity provided insights into better management strategies that ameliorate biochemical limitations to effective biogas production.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0244755</identifier><identifier>PMID: 33395690</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetic acid ; Analysis ; Archaea ; Archaea - genetics ; Bacteria - genetics ; Bacteria, Anaerobic - genetics ; Bacteria, Anaerobic - metabolism ; Biodiversity ; Biofuels - microbiology ; Biogas ; Biology and Life Sciences ; Bioreactors - microbiology ; Carbon dioxide ; Ecology and Environmental Sciences ; Energy conservation ; Engineering and Technology ; Environmental conditions ; Environmental management ; Eukaryotes ; Euryarchaeota - metabolism ; Fermentation ; Fungi ; Fungi - genetics ; Guilds ; Kenya ; Kenyatta, Jomo (1894-1978) ; Macromolecules ; Medicine and Health Sciences ; Metabolism ; Metagenomics ; Metagenomics - methods ; Methane - metabolism ; Methanomicrobiales - metabolism ; Microbiomes ; Microbiota (Symbiotic organisms) ; Microbiota - genetics ; Microbiota - physiology ; Ontology ; Phylogeny ; Physical Sciences ; Productivity ; Rare species ; RNA, Ribosomal, 16S ; Stochasticity ; Substrates ; Sulfur ; Systems stability ; Taxonomy</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0244755-e0244755</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-767dc6eb2bbfc379f09470a5912ce6563306cc35e343da2c81a64d16c3af59c03</citedby><cites>FETCH-LOGICAL-c692t-767dc6eb2bbfc379f09470a5912ce6563306cc35e343da2c81a64d16c3af59c03</cites><orcidid>0000-0002-6581-2195 ; 0000-0002-5763-0383 ; 0000-0003-1053-085X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781671/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781671/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33395690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Abdullah, Bawadi</contributor><creatorcontrib>Muturi, Samuel Mwangangi</creatorcontrib><creatorcontrib>Muthui, Lucy Wangui</creatorcontrib><creatorcontrib>Njogu, Paul Mwangi</creatorcontrib><creatorcontrib>Onguso, Justus Mong'are</creatorcontrib><creatorcontrib>Wachira, Francis Nyamu</creatorcontrib><creatorcontrib>Opiyo, Stephen Obol</creatorcontrib><creatorcontrib>Pelle, Roger</creatorcontrib><title>Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The obstacle to optimal utilization of biogas technology is poor understanding of biogas microbiomes diversities over a wide geographical coverage. We performed random shotgun sequencing on twelve environmental samples. Randomized complete block design was utilized to assign the twelve treatments to four blocks, within eastern and central regions of Kenya. We obtained 42 million paired-end reads that were annotated against sixteen reference databases using two ENVO ontologies, prior to β-diversity studies. We identified 37 phyla, 65 classes and 132 orders. Bacteria dominated and comprised 28 phyla, 42 classes and 92 orders, conveying substrate's versatility in the treatments. Though, Fungi and Archaea comprised 5 phyla, the Fungi were richer; suggesting the importance of hydrolysis and fermentation in biogas production. High β-diversity within the taxa was largely linked to communities' metabolic capabilities. Clostridiales and Bacteroidales, the most prevalent guilds, metabolize organic macromolecules. The identified Cytophagales, Alteromonadales, Flavobacteriales, Fusobacteriales, Deferribacterales, Elusimicrobiales, Chlamydiales, Synergistales to mention but few, also catabolize macromolecules into smaller substrates to conserve energy. Furthermore, δ-Proteobacteria, Gloeobacteria and Clostridia affiliates syntrophically regulate PH2 and reduce metal to provide reducing equivalents. Methanomicrobiales and other Methanomicrobia species were the most prevalence Archaea, converting formate, CO2(g), acetate and methylated substrates into CH4(g). Thermococci, Thermoplasmata and Thermoprotei were among the sulfur and other metal reducing Archaea that contributed to redox balancing and other metabolism within treatments. Eukaryotes, mainly fungi were the least abundant guild, comprising largely Ascomycota and Basidiomycota species. Chytridiomycetes, Blastocladiomycetes and Mortierellomycetes were among the rare species, suggesting their metabolic and substrates limitations. Generally, we observed that environmental and treatment perturbations influenced communities' abundance, β-diversity and reactor performance largely through stochastic effect. Understanding diversity of biogas microbiomes over wide environmental variables and its' productivity provided insights into better management strategies that ameliorate biochemical limitations to effective biogas production.</description><subject>Acetic acid</subject><subject>Analysis</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Bacteria - genetics</subject><subject>Bacteria, Anaerobic - genetics</subject><subject>Bacteria, Anaerobic - metabolism</subject><subject>Biodiversity</subject><subject>Biofuels - microbiology</subject><subject>Biogas</subject><subject>Biology and Life Sciences</subject><subject>Bioreactors - microbiology</subject><subject>Carbon dioxide</subject><subject>Ecology and Environmental Sciences</subject><subject>Energy conservation</subject><subject>Engineering and Technology</subject><subject>Environmental conditions</subject><subject>Environmental management</subject><subject>Eukaryotes</subject><subject>Euryarchaeota - metabolism</subject><subject>Fermentation</subject><subject>Fungi</subject><subject>Fungi - genetics</subject><subject>Guilds</subject><subject>Kenya</subject><subject>Kenyatta, Jomo (1894-1978)</subject><subject>Macromolecules</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Metagenomics</subject><subject>Metagenomics - methods</subject><subject>Methane - metabolism</subject><subject>Methanomicrobiales - metabolism</subject><subject>Microbiomes</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microbiota - genetics</subject><subject>Microbiota - physiology</subject><subject>Ontology</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>Productivity</subject><subject>Rare species</subject><subject>RNA, Ribosomal, 16S</subject><subject>Stochasticity</subject><subject>Substrates</subject><subject>Sulfur</subject><subject>Systems stability</subject><subject>Taxonomy</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12PEyEUhidG467Vf2CUxMToRSszMFBuTDYbPxrXbOLXLWGYMy0NhQpMtf9eamc3HbMXhgsI87wvw8s5RfG0xLOS8PLN2vfBKTvbegczXFHK6_pecV4KUk1Zhcn9k_VZ8SjGNcY1mTP2sDgjhIiaCXxe2M-Q1BKc3xgdUezDDvaod0HtwEbUmh2EaNIe-Q41xi9VRBkMPq83ENEvk1Zo6xO4ZJRFySNwK-U0oG3wba-T2R3ExqFP4PbqcfGgUzbCk2GeFN_fv_t2-XF6df1hcXlxNdVMVGnKGW81g6Zqmk4TLjosKMeqFmWlgdWMEMy0JjUQSlpV6XmpGG1LponqaqExmRTPj75b66McgoqyyhFhLjA5EIsj0Xq1lttgNirspVdG_t3wYSlVSEZbkI3SFOpmroB1lPBW0JpwUHOOmWi1aLLX2-G0vtlAq3MYQdmR6fiLMyu59DvJ-bxkvMwGrwaD4H_2EJPcmKjBWuXA98f_JoKVvMroi3_Qu283UEuVL2Bc5_O5-mAqLxjllNZVLoVJMbuDyqOF_Ma5qjqT90eC1yNBZhL8TkvVxygXX7_8P3v9Y8y-PGFXoGxaRW_7ZLyLY5AewVyBMQbobkMusTw0xU0a8tAUcmiKLHt2-kC3opsuIH8A0yAJMA</recordid><startdate>20210104</startdate><enddate>20210104</enddate><creator>Muturi, Samuel Mwangangi</creator><creator>Muthui, Lucy Wangui</creator><creator>Njogu, Paul Mwangi</creator><creator>Onguso, Justus Mong'are</creator><creator>Wachira, Francis Nyamu</creator><creator>Opiyo, Stephen Obol</creator><creator>Pelle, Roger</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6581-2195</orcidid><orcidid>https://orcid.org/0000-0002-5763-0383</orcidid><orcidid>https://orcid.org/0000-0003-1053-085X</orcidid></search><sort><creationdate>20210104</creationdate><title>Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya</title><author>Muturi, Samuel Mwangangi ; Muthui, Lucy Wangui ; Njogu, Paul Mwangi ; Onguso, Justus Mong'are ; Wachira, Francis Nyamu ; Opiyo, Stephen Obol ; Pelle, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-767dc6eb2bbfc379f09470a5912ce6563306cc35e343da2c81a64d16c3af59c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetic acid</topic><topic>Analysis</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Bacteria - genetics</topic><topic>Bacteria, Anaerobic - genetics</topic><topic>Bacteria, Anaerobic - metabolism</topic><topic>Biodiversity</topic><topic>Biofuels - microbiology</topic><topic>Biogas</topic><topic>Biology and Life Sciences</topic><topic>Bioreactors - microbiology</topic><topic>Carbon dioxide</topic><topic>Ecology and Environmental Sciences</topic><topic>Energy conservation</topic><topic>Engineering and Technology</topic><topic>Environmental conditions</topic><topic>Environmental management</topic><topic>Eukaryotes</topic><topic>Euryarchaeota - metabolism</topic><topic>Fermentation</topic><topic>Fungi</topic><topic>Fungi - genetics</topic><topic>Guilds</topic><topic>Kenya</topic><topic>Kenyatta, Jomo (1894-1978)</topic><topic>Macromolecules</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Metagenomics</topic><topic>Metagenomics - methods</topic><topic>Methane - metabolism</topic><topic>Methanomicrobiales - metabolism</topic><topic>Microbiomes</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microbiota - genetics</topic><topic>Microbiota - physiology</topic><topic>Ontology</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>Productivity</topic><topic>Rare species</topic><topic>RNA, Ribosomal, 16S</topic><topic>Stochasticity</topic><topic>Substrates</topic><topic>Sulfur</topic><topic>Systems stability</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muturi, Samuel Mwangangi</creatorcontrib><creatorcontrib>Muthui, Lucy Wangui</creatorcontrib><creatorcontrib>Njogu, Paul Mwangi</creatorcontrib><creatorcontrib>Onguso, Justus Mong'are</creatorcontrib><creatorcontrib>Wachira, Francis Nyamu</creatorcontrib><creatorcontrib>Opiyo, Stephen Obol</creatorcontrib><creatorcontrib>Pelle, Roger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muturi, Samuel Mwangangi</au><au>Muthui, Lucy Wangui</au><au>Njogu, Paul Mwangi</au><au>Onguso, Justus Mong'are</au><au>Wachira, Francis Nyamu</au><au>Opiyo, Stephen Obol</au><au>Pelle, Roger</au><au>Abdullah, Bawadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-04</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0244755</spage><epage>e0244755</epage><pages>e0244755-e0244755</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The obstacle to optimal utilization of biogas technology is poor understanding of biogas microbiomes diversities over a wide geographical coverage. We performed random shotgun sequencing on twelve environmental samples. Randomized complete block design was utilized to assign the twelve treatments to four blocks, within eastern and central regions of Kenya. We obtained 42 million paired-end reads that were annotated against sixteen reference databases using two ENVO ontologies, prior to β-diversity studies. We identified 37 phyla, 65 classes and 132 orders. Bacteria dominated and comprised 28 phyla, 42 classes and 92 orders, conveying substrate's versatility in the treatments. Though, Fungi and Archaea comprised 5 phyla, the Fungi were richer; suggesting the importance of hydrolysis and fermentation in biogas production. High β-diversity within the taxa was largely linked to communities' metabolic capabilities. Clostridiales and Bacteroidales, the most prevalent guilds, metabolize organic macromolecules. The identified Cytophagales, Alteromonadales, Flavobacteriales, Fusobacteriales, Deferribacterales, Elusimicrobiales, Chlamydiales, Synergistales to mention but few, also catabolize macromolecules into smaller substrates to conserve energy. Furthermore, δ-Proteobacteria, Gloeobacteria and Clostridia affiliates syntrophically regulate PH2 and reduce metal to provide reducing equivalents. Methanomicrobiales and other Methanomicrobia species were the most prevalence Archaea, converting formate, CO2(g), acetate and methylated substrates into CH4(g). Thermococci, Thermoplasmata and Thermoprotei were among the sulfur and other metal reducing Archaea that contributed to redox balancing and other metabolism within treatments. Eukaryotes, mainly fungi were the least abundant guild, comprising largely Ascomycota and Basidiomycota species. Chytridiomycetes, Blastocladiomycetes and Mortierellomycetes were among the rare species, suggesting their metabolic and substrates limitations. Generally, we observed that environmental and treatment perturbations influenced communities' abundance, β-diversity and reactor performance largely through stochastic effect. Understanding diversity of biogas microbiomes over wide environmental variables and its' productivity provided insights into better management strategies that ameliorate biochemical limitations to effective biogas production.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33395690</pmid><doi>10.1371/journal.pone.0244755</doi><tpages>e0244755</tpages><orcidid>https://orcid.org/0000-0002-6581-2195</orcidid><orcidid>https://orcid.org/0000-0002-5763-0383</orcidid><orcidid>https://orcid.org/0000-0003-1053-085X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-01, Vol.16 (1), p.e0244755-e0244755
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2475079030
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetic acid
Analysis
Archaea
Archaea - genetics
Bacteria - genetics
Bacteria, Anaerobic - genetics
Bacteria, Anaerobic - metabolism
Biodiversity
Biofuels - microbiology
Biogas
Biology and Life Sciences
Bioreactors - microbiology
Carbon dioxide
Ecology and Environmental Sciences
Energy conservation
Engineering and Technology
Environmental conditions
Environmental management
Eukaryotes
Euryarchaeota - metabolism
Fermentation
Fungi
Fungi - genetics
Guilds
Kenya
Kenyatta, Jomo (1894-1978)
Macromolecules
Medicine and Health Sciences
Metabolism
Metagenomics
Metagenomics - methods
Methane - metabolism
Methanomicrobiales - metabolism
Microbiomes
Microbiota (Symbiotic organisms)
Microbiota - genetics
Microbiota - physiology
Ontology
Phylogeny
Physical Sciences
Productivity
Rare species
RNA, Ribosomal, 16S
Stochasticity
Substrates
Sulfur
Systems stability
Taxonomy
title Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metagenomics%20survey%20unravels%20diversity%20of%20biogas%20microbiomes%20with%20potential%20to%20enhance%20productivity%20in%20Kenya&rft.jtitle=PloS%20one&rft.au=Muturi,%20Samuel%20Mwangangi&rft.date=2021-01-04&rft.volume=16&rft.issue=1&rft.spage=e0244755&rft.epage=e0244755&rft.pages=e0244755-e0244755&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0244755&rft_dat=%3Cgale_plos_%3EA647445205%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475079030&rft_id=info:pmid/33395690&rft_galeid=A647445205&rft_doaj_id=oai_doaj_org_article_bac4e5b8ae6f437d94537ea87069dc9b&rfr_iscdi=true