Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales
Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) that is responsible for a growing fraction of cirrhosis and liver cancer cases worldwide. Changes in the gut microbiome have been implicated in NASH pathogenesis, but the lack of suitable murine models...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-01, Vol.16 (1), p.e0244763-e0244763 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0244763 |
---|---|
container_issue | 1 |
container_start_page | e0244763 |
container_title | PloS one |
container_volume | 16 |
creator | Carter, James K Bhattacharya, Dipankar Borgerding, Joshua N Fiel, M Isabel Faith, Jeremiah J Friedman, Scott L |
description | Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) that is responsible for a growing fraction of cirrhosis and liver cancer cases worldwide. Changes in the gut microbiome have been implicated in NASH pathogenesis, but the lack of suitable murine models has been a barrier to progress. We have therefore characterized the microbiome in a well-validated murine NASH model to establish its value in modeling human disease.
The composition of intestinal microbiota was monitored in mice on a 12- or 24-week NASH protocol consisting of high fat, high sugar Western Diet (WD) plus once weekly i.p injection of low-dose CCl4. Additional mice were subjected to WD-only or CCl4-only conditions to assess the independent effect of these variables on the microbiome.
There was substantial remodeling of the intestinal microbiome in NASH mice, characterized by declines in both species diversity and bacterial abundance. Based on changes to beta diversity, microbiota from NASH mice clustered separately from controls in principal coordinate analyses. A comparison between WD-only and CCl4-only controls with the NASH model identified WD as the primary driver of early changes to the microbiome, resulting in loss of diversity within the 1st week. A NASH signature emerged progressively at weeks 6 and 12, including, most notably, a reproducible bloom of the Firmicute order Erysipelotrichales.
We have established a valuable model to study the role of gut microbes in NASH, enabling us to identify a new NASH gut microbiome signature. |
doi_str_mv | 10.1371/journal.pone.0244763 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2475078987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A647445209</galeid><doaj_id>oai_doaj_org_article_60b207e17bac473783c80497954c0aa0</doaj_id><sourcerecordid>A647445209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-a8bc523d4b86a2b781daee2d7305e200bed1fe4926f8e70e665f07656c8129a03</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLw0OLEjp3wgFRNg1UqTGLAq-U4l8SVE3e2M-i3x2mzqUV7QH6wff7dnf0_XxS9TNA8wSz5sDaD7YWeb0wPc5QSwih-FJ0mBU5nNEX48cH6JHrm3BqhDOeUPo1OMMZFRjA5jcxXU4FWfRNXW1cq45SLTR23Qyf6-Nvi-jJWfdwpCR_jlXG7s2bwo8WagHcQV-oWrFN-G4u-ik3YNNb89u2IXtitUxvQxlslW6HBPY-e1EI7eDHNZ9HPzxc_zi9nq6svy_PFaiZZlvuZyEuZpbgiZU5FWrI8qQRAWjGMMkgRKqFKaiBFSuscGAJKsxoxmlGZJ2khED6LXu_jbrRxfNLK8ZSwDLG8yFkglnuiMmLNN1Z1wm65EYrvDMY2XFivpAZOUZkiBgkrhSQMsxzLHJGCBQ0lErtsn6ZsQ9lBJaH3VuijoMcnvWp5Y245Cy8jbLzMuymANTcDOM875SRoLXoww_7euAhFowF98w_68Osmqgmqc9XXoQRCjkH5ghJGSJaiIlDzB6gwKggVDh-rVsF-5PD-yCEwHv74RgzO8eX19_9nr34ds28P2BaE9q0zevDK9O4YJHsw_D_nLNT3IieIj31xpwYf-4JPfRHcXh0W6N7prhHwX6ktCB4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475078987</pqid></control><display><type>article</type><title>Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Carter, James K ; Bhattacharya, Dipankar ; Borgerding, Joshua N ; Fiel, M Isabel ; Faith, Jeremiah J ; Friedman, Scott L</creator><creatorcontrib>Carter, James K ; Bhattacharya, Dipankar ; Borgerding, Joshua N ; Fiel, M Isabel ; Faith, Jeremiah J ; Friedman, Scott L</creatorcontrib><description>Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) that is responsible for a growing fraction of cirrhosis and liver cancer cases worldwide. Changes in the gut microbiome have been implicated in NASH pathogenesis, but the lack of suitable murine models has been a barrier to progress. We have therefore characterized the microbiome in a well-validated murine NASH model to establish its value in modeling human disease.
The composition of intestinal microbiota was monitored in mice on a 12- or 24-week NASH protocol consisting of high fat, high sugar Western Diet (WD) plus once weekly i.p injection of low-dose CCl4. Additional mice were subjected to WD-only or CCl4-only conditions to assess the independent effect of these variables on the microbiome.
There was substantial remodeling of the intestinal microbiome in NASH mice, characterized by declines in both species diversity and bacterial abundance. Based on changes to beta diversity, microbiota from NASH mice clustered separately from controls in principal coordinate analyses. A comparison between WD-only and CCl4-only controls with the NASH model identified WD as the primary driver of early changes to the microbiome, resulting in loss of diversity within the 1st week. A NASH signature emerged progressively at weeks 6 and 12, including, most notably, a reproducible bloom of the Firmicute order Erysipelotrichales.
We have established a valuable model to study the role of gut microbes in NASH, enabling us to identify a new NASH gut microbiome signature.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0244763</identifier><identifier>PMID: 33395434</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal models ; Animals ; Bacteria ; Biology and Life Sciences ; Carbon tetrachloride ; Care and treatment ; Cirrhosis ; Deoxyribonucleic acid ; Development and progression ; Diet ; Diet, Western - adverse effects ; Digestive system ; Digestive tract ; Disease Models, Animal ; DNA ; Drug dosages ; Dysbacteriosis ; Dysbiosis - complications ; Dysbiosis - microbiology ; Ecology and Environmental Sciences ; Fatty liver ; Feces ; Feces - microbiology ; Fibrosis - complications ; Fibrosis - microbiology ; Gastrointestinal Microbiome - genetics ; Gastrointestinal Microbiome - physiology ; Gastrointestinal tract ; Gene expression ; Genetic Variation - genetics ; Gram-positive bacteria ; High fat diet ; Histology ; Host-bacteria relationships ; Humans ; Identification and classification ; Immunology ; Independent variables ; Inflammation - complications ; Intestinal microflora ; Intestine ; Laboratories ; Liver ; Liver cancer ; Liver cirrhosis ; Liver Cirrhosis - pathology ; Liver diseases ; Liver Neoplasms - complications ; Male ; Medicine ; Medicine and Health Sciences ; Metabolism ; Mice ; Mice, Inbred C57BL ; Microbiomes ; Microbiota ; Microbiota (Symbiotic organisms) ; Modelling ; Non-alcoholic Fatty Liver Disease - genetics ; Non-alcoholic Fatty Liver Disease - microbiology ; Non-alcoholic Fatty Liver Disease - pathology ; Pathogenesis ; Pathogens ; Population decline ; Research and Analysis Methods ; Species diversity</subject><ispartof>PloS one, 2021-01, Vol.16 (1), p.e0244763-e0244763</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Carter et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Carter et al 2021 Carter et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-a8bc523d4b86a2b781daee2d7305e200bed1fe4926f8e70e665f07656c8129a03</citedby><cites>FETCH-LOGICAL-c758t-a8bc523d4b86a2b781daee2d7305e200bed1fe4926f8e70e665f07656c8129a03</cites><orcidid>0000-0002-4181-8904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781477/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781477/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33395434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, James K</creatorcontrib><creatorcontrib>Bhattacharya, Dipankar</creatorcontrib><creatorcontrib>Borgerding, Joshua N</creatorcontrib><creatorcontrib>Fiel, M Isabel</creatorcontrib><creatorcontrib>Faith, Jeremiah J</creatorcontrib><creatorcontrib>Friedman, Scott L</creatorcontrib><title>Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) that is responsible for a growing fraction of cirrhosis and liver cancer cases worldwide. Changes in the gut microbiome have been implicated in NASH pathogenesis, but the lack of suitable murine models has been a barrier to progress. We have therefore characterized the microbiome in a well-validated murine NASH model to establish its value in modeling human disease.
The composition of intestinal microbiota was monitored in mice on a 12- or 24-week NASH protocol consisting of high fat, high sugar Western Diet (WD) plus once weekly i.p injection of low-dose CCl4. Additional mice were subjected to WD-only or CCl4-only conditions to assess the independent effect of these variables on the microbiome.
There was substantial remodeling of the intestinal microbiome in NASH mice, characterized by declines in both species diversity and bacterial abundance. Based on changes to beta diversity, microbiota from NASH mice clustered separately from controls in principal coordinate analyses. A comparison between WD-only and CCl4-only controls with the NASH model identified WD as the primary driver of early changes to the microbiome, resulting in loss of diversity within the 1st week. A NASH signature emerged progressively at weeks 6 and 12, including, most notably, a reproducible bloom of the Firmicute order Erysipelotrichales.
We have established a valuable model to study the role of gut microbes in NASH, enabling us to identify a new NASH gut microbiome signature.</description><subject>Animal models</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biology and Life Sciences</subject><subject>Carbon tetrachloride</subject><subject>Care and treatment</subject><subject>Cirrhosis</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>Diet</subject><subject>Diet, Western - adverse effects</subject><subject>Digestive system</subject><subject>Digestive tract</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>Drug dosages</subject><subject>Dysbacteriosis</subject><subject>Dysbiosis - complications</subject><subject>Dysbiosis - microbiology</subject><subject>Ecology and Environmental Sciences</subject><subject>Fatty liver</subject><subject>Feces</subject><subject>Feces - microbiology</subject><subject>Fibrosis - complications</subject><subject>Fibrosis - microbiology</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gastrointestinal tract</subject><subject>Gene expression</subject><subject>Genetic Variation - genetics</subject><subject>Gram-positive bacteria</subject><subject>High fat diet</subject><subject>Histology</subject><subject>Host-bacteria relationships</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Immunology</subject><subject>Independent variables</subject><subject>Inflammation - complications</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Laboratories</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - pathology</subject><subject>Liver diseases</subject><subject>Liver Neoplasms - complications</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Modelling</subject><subject>Non-alcoholic Fatty Liver Disease - genetics</subject><subject>Non-alcoholic Fatty Liver Disease - microbiology</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Population decline</subject><subject>Research and Analysis Methods</subject><subject>Species diversity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLw0OLEjp3wgFRNg1UqTGLAq-U4l8SVE3e2M-i3x2mzqUV7QH6wff7dnf0_XxS9TNA8wSz5sDaD7YWeb0wPc5QSwih-FJ0mBU5nNEX48cH6JHrm3BqhDOeUPo1OMMZFRjA5jcxXU4FWfRNXW1cq45SLTR23Qyf6-Nvi-jJWfdwpCR_jlXG7s2bwo8WagHcQV-oWrFN-G4u-ik3YNNb89u2IXtitUxvQxlslW6HBPY-e1EI7eDHNZ9HPzxc_zi9nq6svy_PFaiZZlvuZyEuZpbgiZU5FWrI8qQRAWjGMMkgRKqFKaiBFSuscGAJKsxoxmlGZJ2khED6LXu_jbrRxfNLK8ZSwDLG8yFkglnuiMmLNN1Z1wm65EYrvDMY2XFivpAZOUZkiBgkrhSQMsxzLHJGCBQ0lErtsn6ZsQ9lBJaH3VuijoMcnvWp5Y245Cy8jbLzMuymANTcDOM875SRoLXoww_7euAhFowF98w_68Osmqgmqc9XXoQRCjkH5ghJGSJaiIlDzB6gwKggVDh-rVsF-5PD-yCEwHv74RgzO8eX19_9nr34ds28P2BaE9q0zevDK9O4YJHsw_D_nLNT3IieIj31xpwYf-4JPfRHcXh0W6N7prhHwX6ktCB4</recordid><startdate>20210104</startdate><enddate>20210104</enddate><creator>Carter, James K</creator><creator>Bhattacharya, Dipankar</creator><creator>Borgerding, Joshua N</creator><creator>Fiel, M Isabel</creator><creator>Faith, Jeremiah J</creator><creator>Friedman, Scott L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4181-8904</orcidid></search><sort><creationdate>20210104</creationdate><title>Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales</title><author>Carter, James K ; Bhattacharya, Dipankar ; Borgerding, Joshua N ; Fiel, M Isabel ; Faith, Jeremiah J ; Friedman, Scott L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-a8bc523d4b86a2b781daee2d7305e200bed1fe4926f8e70e665f07656c8129a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biology and Life Sciences</topic><topic>Carbon tetrachloride</topic><topic>Care and treatment</topic><topic>Cirrhosis</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>Diet</topic><topic>Diet, Western - adverse effects</topic><topic>Digestive system</topic><topic>Digestive tract</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>Drug dosages</topic><topic>Dysbacteriosis</topic><topic>Dysbiosis - complications</topic><topic>Dysbiosis - microbiology</topic><topic>Ecology and Environmental Sciences</topic><topic>Fatty liver</topic><topic>Feces</topic><topic>Feces - microbiology</topic><topic>Fibrosis - complications</topic><topic>Fibrosis - microbiology</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gastrointestinal tract</topic><topic>Gene expression</topic><topic>Genetic Variation - genetics</topic><topic>Gram-positive bacteria</topic><topic>High fat diet</topic><topic>Histology</topic><topic>Host-bacteria relationships</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Immunology</topic><topic>Independent variables</topic><topic>Inflammation - complications</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Laboratories</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - pathology</topic><topic>Liver diseases</topic><topic>Liver Neoplasms - complications</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Modelling</topic><topic>Non-alcoholic Fatty Liver Disease - genetics</topic><topic>Non-alcoholic Fatty Liver Disease - microbiology</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Population decline</topic><topic>Research and Analysis Methods</topic><topic>Species diversity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, James K</creatorcontrib><creatorcontrib>Bhattacharya, Dipankar</creatorcontrib><creatorcontrib>Borgerding, Joshua N</creatorcontrib><creatorcontrib>Fiel, M Isabel</creatorcontrib><creatorcontrib>Faith, Jeremiah J</creatorcontrib><creatorcontrib>Friedman, Scott L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, James K</au><au>Bhattacharya, Dipankar</au><au>Borgerding, Joshua N</au><au>Fiel, M Isabel</au><au>Faith, Jeremiah J</au><au>Friedman, Scott L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-01-04</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>e0244763</spage><epage>e0244763</epage><pages>e0244763-e0244763</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) that is responsible for a growing fraction of cirrhosis and liver cancer cases worldwide. Changes in the gut microbiome have been implicated in NASH pathogenesis, but the lack of suitable murine models has been a barrier to progress. We have therefore characterized the microbiome in a well-validated murine NASH model to establish its value in modeling human disease.
The composition of intestinal microbiota was monitored in mice on a 12- or 24-week NASH protocol consisting of high fat, high sugar Western Diet (WD) plus once weekly i.p injection of low-dose CCl4. Additional mice were subjected to WD-only or CCl4-only conditions to assess the independent effect of these variables on the microbiome.
There was substantial remodeling of the intestinal microbiome in NASH mice, characterized by declines in both species diversity and bacterial abundance. Based on changes to beta diversity, microbiota from NASH mice clustered separately from controls in principal coordinate analyses. A comparison between WD-only and CCl4-only controls with the NASH model identified WD as the primary driver of early changes to the microbiome, resulting in loss of diversity within the 1st week. A NASH signature emerged progressively at weeks 6 and 12, including, most notably, a reproducible bloom of the Firmicute order Erysipelotrichales.
We have established a valuable model to study the role of gut microbes in NASH, enabling us to identify a new NASH gut microbiome signature.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33395434</pmid><doi>10.1371/journal.pone.0244763</doi><tpages>e0244763</tpages><orcidid>https://orcid.org/0000-0002-4181-8904</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-01, Vol.16 (1), p.e0244763-e0244763 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2475078987 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animal models Animals Bacteria Biology and Life Sciences Carbon tetrachloride Care and treatment Cirrhosis Deoxyribonucleic acid Development and progression Diet Diet, Western - adverse effects Digestive system Digestive tract Disease Models, Animal DNA Drug dosages Dysbacteriosis Dysbiosis - complications Dysbiosis - microbiology Ecology and Environmental Sciences Fatty liver Feces Feces - microbiology Fibrosis - complications Fibrosis - microbiology Gastrointestinal Microbiome - genetics Gastrointestinal Microbiome - physiology Gastrointestinal tract Gene expression Genetic Variation - genetics Gram-positive bacteria High fat diet Histology Host-bacteria relationships Humans Identification and classification Immunology Independent variables Inflammation - complications Intestinal microflora Intestine Laboratories Liver Liver cancer Liver cirrhosis Liver Cirrhosis - pathology Liver diseases Liver Neoplasms - complications Male Medicine Medicine and Health Sciences Metabolism Mice Mice, Inbred C57BL Microbiomes Microbiota Microbiota (Symbiotic organisms) Modelling Non-alcoholic Fatty Liver Disease - genetics Non-alcoholic Fatty Liver Disease - microbiology Non-alcoholic Fatty Liver Disease - pathology Pathogenesis Pathogens Population decline Research and Analysis Methods Species diversity |
title | Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20dysbiosis%20of%20human%20NASH%20in%20mice:%20Loss%20of%20gut%20microbiome%20diversity%20and%20overgrowth%20of%20Erysipelotrichales&rft.jtitle=PloS%20one&rft.au=Carter,%20James%20K&rft.date=2021-01-04&rft.volume=16&rft.issue=1&rft.spage=e0244763&rft.epage=e0244763&rft.pages=e0244763-e0244763&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0244763&rft_dat=%3Cgale_plos_%3EA647445209%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475078987&rft_id=info:pmid/33395434&rft_galeid=A647445209&rft_doaj_id=oai_doaj_org_article_60b207e17bac473783c80497954c0aa0&rfr_iscdi=true |