Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples
SARS-CoV-2 testing is crucial to controlling the spread of this virus, yet shortages of nucleic acid extraction supplies and other key reagents have hindered the response to COVID-19 in the US. Several groups have described loop-mediated isothermal amplification (LAMP) assays for SARS-CoV-2, includi...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-12, Vol.15 (12), p.e0244882-e0244882 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0244882 |
---|---|
container_issue | 12 |
container_start_page | e0244882 |
container_title | PloS one |
container_volume | 15 |
creator | Dudley, Dawn M Newman, Christina M Weiler, Andrea M Ramuta, Mitchell D Shortreed, Cecilia G Heffron, Anna S Accola, Molly A Rehrauer, William M Friedrich, Thomas C O'Connor, David H |
description | SARS-CoV-2 testing is crucial to controlling the spread of this virus, yet shortages of nucleic acid extraction supplies and other key reagents have hindered the response to COVID-19 in the US. Several groups have described loop-mediated isothermal amplification (LAMP) assays for SARS-CoV-2, including testing directly from nasopharyngeal swabs and eliminating the need for reagents in short supply. Frequent surveillance of individuals attending work or school is currently unavailable to most people but will likely be necessary to reduce the ~50% of transmission that occurs when individuals are nonsymptomatic. Here we describe a fluorescence-based RT-LAMP test using direct nasopharyngeal swab samples and show consistent detection in clinically confirmed primary samples with a limit of detection (LOD) of ~625 copies/μl, approximately 100-fold lower sensitivity than qRT-PCR. While less sensitive than extraction-based molecular methods, RT-LAMP without RNA extraction is fast and inexpensive. Here we also demonstrate that adding a lysis buffer directly into the RT-LAMP reaction improves the sensitivity of some samples by approximately 10-fold. Furthermore, purified RNA in this assay achieves a similar LOD to qRT-PCR. These results indicate that high-throughput RT-LAMP testing could augment qRT-PCR in SARS-CoV-2 surveillance programs, especially while the availability of qRT-PCR testing and RNA extraction reagents is constrained. |
doi_str_mv | 10.1371/journal.pone.0244882 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2474469286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A647157288</galeid><doaj_id>oai_doaj_org_article_79e095e88b614a0bae575127d60893da</doaj_id><sourcerecordid>A647157288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ea0f91db5bd19d0020d7da5e34973d6da91b307993a8f8b62a195d45061a99ea3</originalsourceid><addsrcrecordid>eNqNk9uO0zAQhiMEYpfCGyCIhITgIsWHJLZvkKqKQ6WionbZW8uJndZVEmdth9PT49DsqkF7gXIRa_LN_J4_M1H0HII5xAS-O5retqKed6ZVc4DSlFL0ILqEDKMkRwA_PDtfRE-cOwKQYZrnj6MLjDFFNIeXkdp0Xjf6t273sdRWlT7eXiXrxZevsTexVH6IeCta12jndFGreLfY7pKluU5QXFnTxJ3VjbC_4lY40x3Cqd0rUcfuhyhiJ5quVu5p9KgStVPPxvcs-vbxw9Xyc7LefFotF-ukzBnyiRKgYlAWWSEhkwAgIIkUmcIpI1jmUjBYYEAYw4JWtMiRgCyTaQZyKBhTAs-il6e6XW0cHx1yHKUkTYMCzQOxOhHSiCMfr86N0PxvwNg9F9brslacMAVYpmgQgqkAhVAZySAiMgeUYTmovR_V-qJRslRtMKqeFJ1-afWB7813TgjJhhqz6M1YwJqbXjnPg8mlqmvRKtOP9w7dUhTQV_-g93c3UnsRGtBtZYJuORTlizwlMCOI0kDN76HCI1WjyzBOlQ7xScLbSUJgvPrp96J3jq922_9nN9dT9vUZewhT4w_O1L3XpnVTMD2BpTXOWVXdmQwBH7bh1g0-bAMftyGkvTj_QXdJt-OP_wA2XQP7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474469286</pqid></control><display><type>article</type><title>Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dudley, Dawn M ; Newman, Christina M ; Weiler, Andrea M ; Ramuta, Mitchell D ; Shortreed, Cecilia G ; Heffron, Anna S ; Accola, Molly A ; Rehrauer, William M ; Friedrich, Thomas C ; O'Connor, David H</creator><contributor>Kalendar, Ruslan</contributor><creatorcontrib>Dudley, Dawn M ; Newman, Christina M ; Weiler, Andrea M ; Ramuta, Mitchell D ; Shortreed, Cecilia G ; Heffron, Anna S ; Accola, Molly A ; Rehrauer, William M ; Friedrich, Thomas C ; O'Connor, David H ; Kalendar, Ruslan</creatorcontrib><description>SARS-CoV-2 testing is crucial to controlling the spread of this virus, yet shortages of nucleic acid extraction supplies and other key reagents have hindered the response to COVID-19 in the US. Several groups have described loop-mediated isothermal amplification (LAMP) assays for SARS-CoV-2, including testing directly from nasopharyngeal swabs and eliminating the need for reagents in short supply. Frequent surveillance of individuals attending work or school is currently unavailable to most people but will likely be necessary to reduce the ~50% of transmission that occurs when individuals are nonsymptomatic. Here we describe a fluorescence-based RT-LAMP test using direct nasopharyngeal swab samples and show consistent detection in clinically confirmed primary samples with a limit of detection (LOD) of ~625 copies/μl, approximately 100-fold lower sensitivity than qRT-PCR. While less sensitive than extraction-based molecular methods, RT-LAMP without RNA extraction is fast and inexpensive. Here we also demonstrate that adding a lysis buffer directly into the RT-LAMP reaction improves the sensitivity of some samples by approximately 10-fold. Furthermore, purified RNA in this assay achieves a similar LOD to qRT-PCR. These results indicate that high-throughput RT-LAMP testing could augment qRT-PCR in SARS-CoV-2 surveillance programs, especially while the availability of qRT-PCR testing and RNA extraction reagents is constrained.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0244882</identifier><identifier>PMID: 33382861</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Antigens ; Asymptomatic ; Biology and life sciences ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - genetics ; COVID-19 Nucleic Acid Testing ; Disease control ; Disease transmission ; DNA Primers - chemistry ; DNA Primers - genetics ; Fluorescence ; Gene amplification ; Humans ; Limit of Detection ; Lysis ; Medical laboratories ; Medicine ; Medicine and health sciences ; Methods ; Molecular Diagnostic Techniques ; Nasopharynx - virology ; Nucleic Acid Amplification Techniques ; Nucleic acids ; Pathology ; Reagents ; Research and analysis methods ; Ribonucleic acid ; RNA ; RNA sequencing ; RNA, Viral - genetics ; SARS-CoV-2 - genetics ; Sensitivity ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Surveillance ; Viruses</subject><ispartof>PloS one, 2020-12, Vol.15 (12), p.e0244882-e0244882</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Dudley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Dudley et al 2020 Dudley et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ea0f91db5bd19d0020d7da5e34973d6da91b307993a8f8b62a195d45061a99ea3</citedby><cites>FETCH-LOGICAL-c692t-ea0f91db5bd19d0020d7da5e34973d6da91b307993a8f8b62a195d45061a99ea3</cites><orcidid>0000-0003-0934-2042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775089/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775089/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33382861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kalendar, Ruslan</contributor><creatorcontrib>Dudley, Dawn M</creatorcontrib><creatorcontrib>Newman, Christina M</creatorcontrib><creatorcontrib>Weiler, Andrea M</creatorcontrib><creatorcontrib>Ramuta, Mitchell D</creatorcontrib><creatorcontrib>Shortreed, Cecilia G</creatorcontrib><creatorcontrib>Heffron, Anna S</creatorcontrib><creatorcontrib>Accola, Molly A</creatorcontrib><creatorcontrib>Rehrauer, William M</creatorcontrib><creatorcontrib>Friedrich, Thomas C</creatorcontrib><creatorcontrib>O'Connor, David H</creatorcontrib><title>Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>SARS-CoV-2 testing is crucial to controlling the spread of this virus, yet shortages of nucleic acid extraction supplies and other key reagents have hindered the response to COVID-19 in the US. Several groups have described loop-mediated isothermal amplification (LAMP) assays for SARS-CoV-2, including testing directly from nasopharyngeal swabs and eliminating the need for reagents in short supply. Frequent surveillance of individuals attending work or school is currently unavailable to most people but will likely be necessary to reduce the ~50% of transmission that occurs when individuals are nonsymptomatic. Here we describe a fluorescence-based RT-LAMP test using direct nasopharyngeal swab samples and show consistent detection in clinically confirmed primary samples with a limit of detection (LOD) of ~625 copies/μl, approximately 100-fold lower sensitivity than qRT-PCR. While less sensitive than extraction-based molecular methods, RT-LAMP without RNA extraction is fast and inexpensive. Here we also demonstrate that adding a lysis buffer directly into the RT-LAMP reaction improves the sensitivity of some samples by approximately 10-fold. Furthermore, purified RNA in this assay achieves a similar LOD to qRT-PCR. These results indicate that high-throughput RT-LAMP testing could augment qRT-PCR in SARS-CoV-2 surveillance programs, especially while the availability of qRT-PCR testing and RNA extraction reagents is constrained.</description><subject>Acids</subject><subject>Antigens</subject><subject>Asymptomatic</subject><subject>Biology and life sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - genetics</subject><subject>COVID-19 Nucleic Acid Testing</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>DNA Primers - chemistry</subject><subject>DNA Primers - genetics</subject><subject>Fluorescence</subject><subject>Gene amplification</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Lysis</subject><subject>Medical laboratories</subject><subject>Medicine</subject><subject>Medicine and health sciences</subject><subject>Methods</subject><subject>Molecular Diagnostic Techniques</subject><subject>Nasopharynx - virology</subject><subject>Nucleic Acid Amplification Techniques</subject><subject>Nucleic acids</subject><subject>Pathology</subject><subject>Reagents</subject><subject>Research and analysis methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA, Viral - genetics</subject><subject>SARS-CoV-2 - genetics</subject><subject>Sensitivity</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Surveillance</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uO0zAQhiMEYpfCGyCIhITgIsWHJLZvkKqKQ6WionbZW8uJndZVEmdth9PT49DsqkF7gXIRa_LN_J4_M1H0HII5xAS-O5retqKed6ZVc4DSlFL0ILqEDKMkRwA_PDtfRE-cOwKQYZrnj6MLjDFFNIeXkdp0Xjf6t273sdRWlT7eXiXrxZevsTexVH6IeCta12jndFGreLfY7pKluU5QXFnTxJ3VjbC_4lY40x3Cqd0rUcfuhyhiJ5quVu5p9KgStVPPxvcs-vbxw9Xyc7LefFotF-ukzBnyiRKgYlAWWSEhkwAgIIkUmcIpI1jmUjBYYEAYw4JWtMiRgCyTaQZyKBhTAs-il6e6XW0cHx1yHKUkTYMCzQOxOhHSiCMfr86N0PxvwNg9F9brslacMAVYpmgQgqkAhVAZySAiMgeUYTmovR_V-qJRslRtMKqeFJ1-afWB7813TgjJhhqz6M1YwJqbXjnPg8mlqmvRKtOP9w7dUhTQV_-g93c3UnsRGtBtZYJuORTlizwlMCOI0kDN76HCI1WjyzBOlQ7xScLbSUJgvPrp96J3jq922_9nN9dT9vUZewhT4w_O1L3XpnVTMD2BpTXOWVXdmQwBH7bh1g0-bAMftyGkvTj_QXdJt-OP_wA2XQP7</recordid><startdate>20201231</startdate><enddate>20201231</enddate><creator>Dudley, Dawn M</creator><creator>Newman, Christina M</creator><creator>Weiler, Andrea M</creator><creator>Ramuta, Mitchell D</creator><creator>Shortreed, Cecilia G</creator><creator>Heffron, Anna S</creator><creator>Accola, Molly A</creator><creator>Rehrauer, William M</creator><creator>Friedrich, Thomas C</creator><creator>O'Connor, David H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0934-2042</orcidid></search><sort><creationdate>20201231</creationdate><title>Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples</title><author>Dudley, Dawn M ; Newman, Christina M ; Weiler, Andrea M ; Ramuta, Mitchell D ; Shortreed, Cecilia G ; Heffron, Anna S ; Accola, Molly A ; Rehrauer, William M ; Friedrich, Thomas C ; O'Connor, David H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ea0f91db5bd19d0020d7da5e34973d6da91b307993a8f8b62a195d45061a99ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Antigens</topic><topic>Asymptomatic</topic><topic>Biology and life sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - genetics</topic><topic>COVID-19 Nucleic Acid Testing</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>DNA Primers - chemistry</topic><topic>DNA Primers - genetics</topic><topic>Fluorescence</topic><topic>Gene amplification</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Lysis</topic><topic>Medical laboratories</topic><topic>Medicine</topic><topic>Medicine and health sciences</topic><topic>Methods</topic><topic>Molecular Diagnostic Techniques</topic><topic>Nasopharynx - virology</topic><topic>Nucleic Acid Amplification Techniques</topic><topic>Nucleic acids</topic><topic>Pathology</topic><topic>Reagents</topic><topic>Research and analysis methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA, Viral - genetics</topic><topic>SARS-CoV-2 - genetics</topic><topic>Sensitivity</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Surveillance</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudley, Dawn M</creatorcontrib><creatorcontrib>Newman, Christina M</creatorcontrib><creatorcontrib>Weiler, Andrea M</creatorcontrib><creatorcontrib>Ramuta, Mitchell D</creatorcontrib><creatorcontrib>Shortreed, Cecilia G</creatorcontrib><creatorcontrib>Heffron, Anna S</creatorcontrib><creatorcontrib>Accola, Molly A</creatorcontrib><creatorcontrib>Rehrauer, William M</creatorcontrib><creatorcontrib>Friedrich, Thomas C</creatorcontrib><creatorcontrib>O'Connor, David H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudley, Dawn M</au><au>Newman, Christina M</au><au>Weiler, Andrea M</au><au>Ramuta, Mitchell D</au><au>Shortreed, Cecilia G</au><au>Heffron, Anna S</au><au>Accola, Molly A</au><au>Rehrauer, William M</au><au>Friedrich, Thomas C</au><au>O'Connor, David H</au><au>Kalendar, Ruslan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-12-31</date><risdate>2020</risdate><volume>15</volume><issue>12</issue><spage>e0244882</spage><epage>e0244882</epage><pages>e0244882-e0244882</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>SARS-CoV-2 testing is crucial to controlling the spread of this virus, yet shortages of nucleic acid extraction supplies and other key reagents have hindered the response to COVID-19 in the US. Several groups have described loop-mediated isothermal amplification (LAMP) assays for SARS-CoV-2, including testing directly from nasopharyngeal swabs and eliminating the need for reagents in short supply. Frequent surveillance of individuals attending work or school is currently unavailable to most people but will likely be necessary to reduce the ~50% of transmission that occurs when individuals are nonsymptomatic. Here we describe a fluorescence-based RT-LAMP test using direct nasopharyngeal swab samples and show consistent detection in clinically confirmed primary samples with a limit of detection (LOD) of ~625 copies/μl, approximately 100-fold lower sensitivity than qRT-PCR. While less sensitive than extraction-based molecular methods, RT-LAMP without RNA extraction is fast and inexpensive. Here we also demonstrate that adding a lysis buffer directly into the RT-LAMP reaction improves the sensitivity of some samples by approximately 10-fold. Furthermore, purified RNA in this assay achieves a similar LOD to qRT-PCR. These results indicate that high-throughput RT-LAMP testing could augment qRT-PCR in SARS-CoV-2 surveillance programs, especially while the availability of qRT-PCR testing and RNA extraction reagents is constrained.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33382861</pmid><doi>10.1371/journal.pone.0244882</doi><tpages>e0244882</tpages><orcidid>https://orcid.org/0000-0003-0934-2042</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-12, Vol.15 (12), p.e0244882-e0244882 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2474469286 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acids Antigens Asymptomatic Biology and life sciences Coronaviruses COVID-19 COVID-19 - diagnosis COVID-19 - genetics COVID-19 Nucleic Acid Testing Disease control Disease transmission DNA Primers - chemistry DNA Primers - genetics Fluorescence Gene amplification Humans Limit of Detection Lysis Medical laboratories Medicine Medicine and health sciences Methods Molecular Diagnostic Techniques Nasopharynx - virology Nucleic Acid Amplification Techniques Nucleic acids Pathology Reagents Research and analysis methods Ribonucleic acid RNA RNA sequencing RNA, Viral - genetics SARS-CoV-2 - genetics Sensitivity Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Surveillance Viruses |
title | Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20direct%20RT-LAMP%20to%20detect%20transmissible%20SARS-CoV-2%20from%20primary%20nasopharyngeal%20swab%20samples&rft.jtitle=PloS%20one&rft.au=Dudley,%20Dawn%20M&rft.date=2020-12-31&rft.volume=15&rft.issue=12&rft.spage=e0244882&rft.epage=e0244882&rft.pages=e0244882-e0244882&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0244882&rft_dat=%3Cgale_plos_%3EA647157288%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474469286&rft_id=info:pmid/33382861&rft_galeid=A647157288&rft_doaj_id=oai_doaj_org_article_79e095e88b614a0bae575127d60893da&rfr_iscdi=true |