A computational model of liver tissue damage and repair
Drug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, hig...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-12, Vol.15 (12), p.e0243451 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e0243451 |
container_title | PloS one |
container_volume | 15 |
creator | Adhyapok, Priyom Fu, Xiao Sluka, James P Clendenon, Sherry G Sluka, Victoria D Wang, Zemin Dunn, Kenneth Klaunig, James E Glazier, James A |
description | Drug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, high doses are still lethal to the tissue. To understand the progression of disease from the initial damage to tissue recovery or death, we computationally model the competing biological processes of hepatocyte proliferation, necrosis and injury propagation. We parametrize timescales of proliferation (α), conversion of healthy to stressed cells (β) and further sensitization of stressed cells towards necrotic pathways (γ) and model them on a Cellular Automaton (CA) based grid of lattice sites. 1D simulations show that a small α/β (fast proliferation), combined with a large γ/β (slow death) have the lowest probabilities of tissue survival. At large α/β, tissue fate can be described by a critical γ/β* ratio alone; this value is dependent on the initial amount of damage and proportional to the tissue size N. Additionally, the 1D model predicts a minimum healthy population size below which damage is irreversible. Finally, we compare 1D and 2D phase spaces and discuss outcomes of bistability where either survival or death is possible, and of coexistence where simulated tissue never completely recovers or dies but persists as a mixture of healthy, stressed and necrotic cells. In conclusion, our model sheds light on the evolution of tissue damage or recovery and predicts potential for divergent fates given different rates of proliferation, necrosis, and injury propagation. |
doi_str_mv | 10.1371/journal.pone.0243451 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2471717375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A646112487</galeid><doaj_id>oai_doaj_org_article_5bbadffbbea14e2d947bac17c18ffe2e</doaj_id><sourcerecordid>A646112487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-20670b3d37baac7e308134d4677a6c3cd14e7af59bc0a500be8780b4137a42bb3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguDFjPlq07kRhmXVgYUFv27DSXLaydA2Y9Iu-u8343SXKSjIuUhInvPmnJM3y15SsqRc0vc7P4Ye2uXe97gkTHBR0EfZOV1xtigZ4Y9P9mfZsxh3hBS8Ksun2RnnXEgh-Hkm17nx3X4cYHA-yeWdt9jmvs5bd4shH1yMI-YWOmgwh97mAffgwvPsSQ1txBfTepF9_3j17fLz4vrm0-Zyfb0w5YoNC0ZKSTS3XGoAI5GTinJhRSkllIYbSwVKqIuVNgQKQjRWsiJapA5BMK35Rfb6qLtvfVRTz1ExIWkKLotEbI6E9bBT--A6CL-VB6f-HPjQKAiDMy2qQmuwda01QnqX2ZVIZRkqDa3qGhkmrQ_Ta6Pu0BrshwDtTHR-07utavytkrJgVKySwJtJIPifI8bhHyVPVAOpKtfXPomZzkWj1qUoKWWikola_oVKYbFzJv167dL5LOHdLCExA_4aGhhjVJuvX_6fvfkxZ9-esFuEdthG344Hx8Q5KI6gCT7GgPXD5ChRB9PeT0MdTKsm06a0V6dTf0i6dym_A0Ul5uM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471717375</pqid></control><display><type>article</type><title>A computational model of liver tissue damage and repair</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Adhyapok, Priyom ; Fu, Xiao ; Sluka, James P ; Clendenon, Sherry G ; Sluka, Victoria D ; Wang, Zemin ; Dunn, Kenneth ; Klaunig, James E ; Glazier, James A</creator><contributor>Garcia-Ojalvo, Jordi</contributor><creatorcontrib>Adhyapok, Priyom ; Fu, Xiao ; Sluka, James P ; Clendenon, Sherry G ; Sluka, Victoria D ; Wang, Zemin ; Dunn, Kenneth ; Klaunig, James E ; Glazier, James A ; Garcia-Ojalvo, Jordi</creatorcontrib><description>Drug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, high doses are still lethal to the tissue. To understand the progression of disease from the initial damage to tissue recovery or death, we computationally model the competing biological processes of hepatocyte proliferation, necrosis and injury propagation. We parametrize timescales of proliferation (α), conversion of healthy to stressed cells (β) and further sensitization of stressed cells towards necrotic pathways (γ) and model them on a Cellular Automaton (CA) based grid of lattice sites. 1D simulations show that a small α/β (fast proliferation), combined with a large γ/β (slow death) have the lowest probabilities of tissue survival. At large α/β, tissue fate can be described by a critical γ/β* ratio alone; this value is dependent on the initial amount of damage and proportional to the tissue size N. Additionally, the 1D model predicts a minimum healthy population size below which damage is irreversible. Finally, we compare 1D and 2D phase spaces and discuss outcomes of bistability where either survival or death is possible, and of coexistence where simulated tissue never completely recovers or dies but persists as a mixture of healthy, stressed and necrotic cells. In conclusion, our model sheds light on the evolution of tissue damage or recovery and predicts potential for divergent fates given different rates of proliferation, necrosis, and injury propagation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0243451</identifier><identifier>PMID: 33347443</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetaminophen ; Acetaminophen - toxicity ; Alanine Transaminase - metabolism ; Analysis ; Animals ; Apoptosis ; Aspartate Aminotransferases - metabolism ; Biological activity ; Biology and Life Sciences ; Bistability ; Causes of ; Cell activation ; Cell death ; Cell interactions ; Cell Proliferation ; Cellular automata ; Chemical and Drug Induced Liver Injury - pathology ; Complications and side effects ; Computer applications ; Cytokines ; Damage patterns ; Deoxyribonucleic acid ; Development and progression ; Divergence ; DNA ; Dosage and administration ; Drug dosages ; Growth ; Health care ; Hepatocytes ; Hepatocytes - cytology ; Hepatocytes - metabolism ; Immune system ; Injuries ; Intelligent systems ; Lattice sites ; Liver ; Liver - enzymology ; Liver - metabolism ; Liver - pathology ; Liver cells ; Liver diseases ; Medicine and Health Sciences ; Mice ; Mitochondrial DNA ; Models, Animal ; Mortality ; Necrosis ; Neutrophils ; One dimensional models ; Oxidative stress ; Phase transitions ; Physiological aspects ; Population number ; Proteins ; Public health ; Recovery ; Research and Analysis Methods ; Stress propagation ; Survival ; Tissues ; Veins & arteries</subject><ispartof>PloS one, 2020-12, Vol.15 (12), p.e0243451</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Adhyapok et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Adhyapok et al 2020 Adhyapok et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-20670b3d37baac7e308134d4677a6c3cd14e7af59bc0a500be8780b4137a42bb3</citedby><cites>FETCH-LOGICAL-c692t-20670b3d37baac7e308134d4677a6c3cd14e7af59bc0a500be8780b4137a42bb3</cites><orcidid>0000-0002-3353-0919 ; 0000-0003-3067-7058 ; 0000-0003-4189-578X ; 0000-0003-1724-5007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7752149/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7752149/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33347443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Garcia-Ojalvo, Jordi</contributor><creatorcontrib>Adhyapok, Priyom</creatorcontrib><creatorcontrib>Fu, Xiao</creatorcontrib><creatorcontrib>Sluka, James P</creatorcontrib><creatorcontrib>Clendenon, Sherry G</creatorcontrib><creatorcontrib>Sluka, Victoria D</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Dunn, Kenneth</creatorcontrib><creatorcontrib>Klaunig, James E</creatorcontrib><creatorcontrib>Glazier, James A</creatorcontrib><title>A computational model of liver tissue damage and repair</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Drug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, high doses are still lethal to the tissue. To understand the progression of disease from the initial damage to tissue recovery or death, we computationally model the competing biological processes of hepatocyte proliferation, necrosis and injury propagation. We parametrize timescales of proliferation (α), conversion of healthy to stressed cells (β) and further sensitization of stressed cells towards necrotic pathways (γ) and model them on a Cellular Automaton (CA) based grid of lattice sites. 1D simulations show that a small α/β (fast proliferation), combined with a large γ/β (slow death) have the lowest probabilities of tissue survival. At large α/β, tissue fate can be described by a critical γ/β* ratio alone; this value is dependent on the initial amount of damage and proportional to the tissue size N. Additionally, the 1D model predicts a minimum healthy population size below which damage is irreversible. Finally, we compare 1D and 2D phase spaces and discuss outcomes of bistability where either survival or death is possible, and of coexistence where simulated tissue never completely recovers or dies but persists as a mixture of healthy, stressed and necrotic cells. In conclusion, our model sheds light on the evolution of tissue damage or recovery and predicts potential for divergent fates given different rates of proliferation, necrosis, and injury propagation.</description><subject>Acetaminophen</subject><subject>Acetaminophen - toxicity</subject><subject>Alanine Transaminase - metabolism</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Aspartate Aminotransferases - metabolism</subject><subject>Biological activity</subject><subject>Biology and Life Sciences</subject><subject>Bistability</subject><subject>Causes of</subject><subject>Cell activation</subject><subject>Cell death</subject><subject>Cell interactions</subject><subject>Cell Proliferation</subject><subject>Cellular automata</subject><subject>Chemical and Drug Induced Liver Injury - pathology</subject><subject>Complications and side effects</subject><subject>Computer applications</subject><subject>Cytokines</subject><subject>Damage patterns</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>Divergence</subject><subject>DNA</subject><subject>Dosage and administration</subject><subject>Drug dosages</subject><subject>Growth</subject><subject>Health care</subject><subject>Hepatocytes</subject><subject>Hepatocytes - cytology</subject><subject>Hepatocytes - metabolism</subject><subject>Immune system</subject><subject>Injuries</subject><subject>Intelligent systems</subject><subject>Lattice sites</subject><subject>Liver</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver cells</subject><subject>Liver diseases</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mitochondrial DNA</subject><subject>Models, Animal</subject><subject>Mortality</subject><subject>Necrosis</subject><subject>Neutrophils</subject><subject>One dimensional models</subject><subject>Oxidative stress</subject><subject>Phase transitions</subject><subject>Physiological aspects</subject><subject>Population number</subject><subject>Proteins</subject><subject>Public health</subject><subject>Recovery</subject><subject>Research and Analysis Methods</subject><subject>Stress propagation</subject><subject>Survival</subject><subject>Tissues</subject><subject>Veins & arteries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguDFjPlq07kRhmXVgYUFv27DSXLaydA2Y9Iu-u8343SXKSjIuUhInvPmnJM3y15SsqRc0vc7P4Ye2uXe97gkTHBR0EfZOV1xtigZ4Y9P9mfZsxh3hBS8Ksun2RnnXEgh-Hkm17nx3X4cYHA-yeWdt9jmvs5bd4shH1yMI-YWOmgwh97mAffgwvPsSQ1txBfTepF9_3j17fLz4vrm0-Zyfb0w5YoNC0ZKSTS3XGoAI5GTinJhRSkllIYbSwVKqIuVNgQKQjRWsiJapA5BMK35Rfb6qLtvfVRTz1ExIWkKLotEbI6E9bBT--A6CL-VB6f-HPjQKAiDMy2qQmuwda01QnqX2ZVIZRkqDa3qGhkmrQ_Ta6Pu0BrshwDtTHR-07utavytkrJgVKySwJtJIPifI8bhHyVPVAOpKtfXPomZzkWj1qUoKWWikola_oVKYbFzJv167dL5LOHdLCExA_4aGhhjVJuvX_6fvfkxZ9-esFuEdthG344Hx8Q5KI6gCT7GgPXD5ChRB9PeT0MdTKsm06a0V6dTf0i6dym_A0Ul5uM</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Adhyapok, Priyom</creator><creator>Fu, Xiao</creator><creator>Sluka, James P</creator><creator>Clendenon, Sherry G</creator><creator>Sluka, Victoria D</creator><creator>Wang, Zemin</creator><creator>Dunn, Kenneth</creator><creator>Klaunig, James E</creator><creator>Glazier, James A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3353-0919</orcidid><orcidid>https://orcid.org/0000-0003-3067-7058</orcidid><orcidid>https://orcid.org/0000-0003-4189-578X</orcidid><orcidid>https://orcid.org/0000-0003-1724-5007</orcidid></search><sort><creationdate>20201221</creationdate><title>A computational model of liver tissue damage and repair</title><author>Adhyapok, Priyom ; Fu, Xiao ; Sluka, James P ; Clendenon, Sherry G ; Sluka, Victoria D ; Wang, Zemin ; Dunn, Kenneth ; Klaunig, James E ; Glazier, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-20670b3d37baac7e308134d4677a6c3cd14e7af59bc0a500be8780b4137a42bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetaminophen</topic><topic>Acetaminophen - toxicity</topic><topic>Alanine Transaminase - metabolism</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Aspartate Aminotransferases - metabolism</topic><topic>Biological activity</topic><topic>Biology and Life Sciences</topic><topic>Bistability</topic><topic>Causes of</topic><topic>Cell activation</topic><topic>Cell death</topic><topic>Cell interactions</topic><topic>Cell Proliferation</topic><topic>Cellular automata</topic><topic>Chemical and Drug Induced Liver Injury - pathology</topic><topic>Complications and side effects</topic><topic>Computer applications</topic><topic>Cytokines</topic><topic>Damage patterns</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>Divergence</topic><topic>DNA</topic><topic>Dosage and administration</topic><topic>Drug dosages</topic><topic>Growth</topic><topic>Health care</topic><topic>Hepatocytes</topic><topic>Hepatocytes - cytology</topic><topic>Hepatocytes - metabolism</topic><topic>Immune system</topic><topic>Injuries</topic><topic>Intelligent systems</topic><topic>Lattice sites</topic><topic>Liver</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver cells</topic><topic>Liver diseases</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mitochondrial DNA</topic><topic>Models, Animal</topic><topic>Mortality</topic><topic>Necrosis</topic><topic>Neutrophils</topic><topic>One dimensional models</topic><topic>Oxidative stress</topic><topic>Phase transitions</topic><topic>Physiological aspects</topic><topic>Population number</topic><topic>Proteins</topic><topic>Public health</topic><topic>Recovery</topic><topic>Research and Analysis Methods</topic><topic>Stress propagation</topic><topic>Survival</topic><topic>Tissues</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhyapok, Priyom</creatorcontrib><creatorcontrib>Fu, Xiao</creatorcontrib><creatorcontrib>Sluka, James P</creatorcontrib><creatorcontrib>Clendenon, Sherry G</creatorcontrib><creatorcontrib>Sluka, Victoria D</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Dunn, Kenneth</creatorcontrib><creatorcontrib>Klaunig, James E</creatorcontrib><creatorcontrib>Glazier, James A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhyapok, Priyom</au><au>Fu, Xiao</au><au>Sluka, James P</au><au>Clendenon, Sherry G</au><au>Sluka, Victoria D</au><au>Wang, Zemin</au><au>Dunn, Kenneth</au><au>Klaunig, James E</au><au>Glazier, James A</au><au>Garcia-Ojalvo, Jordi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational model of liver tissue damage and repair</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>15</volume><issue>12</issue><spage>e0243451</spage><pages>e0243451-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Drug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, high doses are still lethal to the tissue. To understand the progression of disease from the initial damage to tissue recovery or death, we computationally model the competing biological processes of hepatocyte proliferation, necrosis and injury propagation. We parametrize timescales of proliferation (α), conversion of healthy to stressed cells (β) and further sensitization of stressed cells towards necrotic pathways (γ) and model them on a Cellular Automaton (CA) based grid of lattice sites. 1D simulations show that a small α/β (fast proliferation), combined with a large γ/β (slow death) have the lowest probabilities of tissue survival. At large α/β, tissue fate can be described by a critical γ/β* ratio alone; this value is dependent on the initial amount of damage and proportional to the tissue size N. Additionally, the 1D model predicts a minimum healthy population size below which damage is irreversible. Finally, we compare 1D and 2D phase spaces and discuss outcomes of bistability where either survival or death is possible, and of coexistence where simulated tissue never completely recovers or dies but persists as a mixture of healthy, stressed and necrotic cells. In conclusion, our model sheds light on the evolution of tissue damage or recovery and predicts potential for divergent fates given different rates of proliferation, necrosis, and injury propagation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33347443</pmid><doi>10.1371/journal.pone.0243451</doi><tpages>e0243451</tpages><orcidid>https://orcid.org/0000-0002-3353-0919</orcidid><orcidid>https://orcid.org/0000-0003-3067-7058</orcidid><orcidid>https://orcid.org/0000-0003-4189-578X</orcidid><orcidid>https://orcid.org/0000-0003-1724-5007</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-12, Vol.15 (12), p.e0243451 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2471717375 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acetaminophen Acetaminophen - toxicity Alanine Transaminase - metabolism Analysis Animals Apoptosis Aspartate Aminotransferases - metabolism Biological activity Biology and Life Sciences Bistability Causes of Cell activation Cell death Cell interactions Cell Proliferation Cellular automata Chemical and Drug Induced Liver Injury - pathology Complications and side effects Computer applications Cytokines Damage patterns Deoxyribonucleic acid Development and progression Divergence DNA Dosage and administration Drug dosages Growth Health care Hepatocytes Hepatocytes - cytology Hepatocytes - metabolism Immune system Injuries Intelligent systems Lattice sites Liver Liver - enzymology Liver - metabolism Liver - pathology Liver cells Liver diseases Medicine and Health Sciences Mice Mitochondrial DNA Models, Animal Mortality Necrosis Neutrophils One dimensional models Oxidative stress Phase transitions Physiological aspects Population number Proteins Public health Recovery Research and Analysis Methods Stress propagation Survival Tissues Veins & arteries |
title | A computational model of liver tissue damage and repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20model%20of%20liver%20tissue%20damage%20and%20repair&rft.jtitle=PloS%20one&rft.au=Adhyapok,%20Priyom&rft.date=2020-12-21&rft.volume=15&rft.issue=12&rft.spage=e0243451&rft.pages=e0243451-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0243451&rft_dat=%3Cgale_plos_%3EA646112487%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471717375&rft_id=info:pmid/33347443&rft_galeid=A646112487&rft_doaj_id=oai_doaj_org_article_5bbadffbbea14e2d947bac17c18ffe2e&rfr_iscdi=true |