Deep learning of cuneiform sign detection with weak supervision using transliteration alignment

The cuneiform script provides a glimpse into our ancient history. However, reading age-old clay tablets is time-consuming and requires years of training. To simplify this process, we propose a deep-learning based sign detector that locates and classifies cuneiform signs in images of clay tablets. De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-12, Vol.15 (12), p.e0243039-e0243039
Hauptverfasser: Dencker, Tobias, Klinkisch, Pablo, Maul, Stefan M, Ommer, Björn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0243039
container_issue 12
container_start_page e0243039
container_title PloS one
container_volume 15
creator Dencker, Tobias
Klinkisch, Pablo
Maul, Stefan M
Ommer, Björn
description The cuneiform script provides a glimpse into our ancient history. However, reading age-old clay tablets is time-consuming and requires years of training. To simplify this process, we propose a deep-learning based sign detector that locates and classifies cuneiform signs in images of clay tablets. Deep learning requires large amounts of training data in the form of bounding boxes around cuneiform signs, which are not readily available and costly to obtain in the case of cuneiform script. To tackle this problem, we make use of existing transliterations, a sign-by-sign representation of the tablet content in Latin script. Since these do not provide sign localization, we propose a weakly supervised approach: We align tablet images with their corresponding transliterations to localize the transliterated signs in the tablet image, before using these localized signs in place of annotations to re-train the sign detector. A better sign detector in turn boosts the quality of the alignments. We combine these steps in an iterative process that enables training a cuneiform sign detector from transliterations only. While our method works weakly supervised, a small number of annotations further boost the performance of the cuneiform sign detector which we evaluate on a large collection of clay tablets from the Neo-Assyrian period. To enable experts to directly apply the sign detector in their study of cuneiform texts, we additionally provide a web application for the analysis of clay tablets with a trained cuneiform sign detector.
doi_str_mv 10.1371/journal.pone.0243039
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2470608622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645383096</galeid><doaj_id>oai_doaj_org_article_6af5d2010cfb4c16b3e07fdc3c85726f</doaj_id><sourcerecordid>A645383096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bcc65969a9d36be4a8054f7c89c116e4ca50266ce355db3406e703a3224caba63</originalsourceid><addsrcrecordid>eNqNk01r3DAQhk1padJt_0FpDYXSHnYrS7ZkXwoh6cdCINCvq5DlsVdbWdpIcpL--8pZJ6xLDsUHmdHzvtKMZpLkZYZWGWHZh60dnBF6tbMGVgjnBJHqUXKcVQQvKUbk8cH_UfLM-y1CBSkpfZocEUIwzUlxnPAzgF2qQTijTJfaNpWDAdVa16dedSZtIIAMypr0WoVNeg3id-qHHbgr5cfo4EddcMJ4rQI4ccsKHbU9mPA8edIK7eHFtC6Sn58__Tj9ujy_-LI-PTlfSlrhsKylpEVFK1E1hNaQixIVectkWckso5BLUSBMqQRSFE1NckSBISIIxnGrFpQsktd73522nk-18RznDFFUUowjsd4TjRVbvnOqF-4Pt0Lx24B1HRcuKKmBU9EWDUYZkm2dy4zWBBBrG0lkWTBM2-j1cTptqHtoZEzUCT0zne8YteGdveKM5aSKN18k7yYDZy8H8IH3ykvQWhiww_7eZcUYKyP65h_04ewmqhMxAWVaG8-Voyk_oXl8d4KqsUqrB6j4NdArGRupVTE-E7yfCSIT4CZ0YvCer79_-3_24tecfXvAbkDosPFWD2Pz-DmY70HprPcO2vsiZ4iPc3BXDT7OAZ_mIMpeHT7Qveiu8clfd-YEHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470608622</pqid></control><display><type>article</type><title>Deep learning of cuneiform sign detection with weak supervision using transliteration alignment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dencker, Tobias ; Klinkisch, Pablo ; Maul, Stefan M ; Ommer, Björn</creator><contributor>Bagci, Ulas</contributor><creatorcontrib>Dencker, Tobias ; Klinkisch, Pablo ; Maul, Stefan M ; Ommer, Björn ; Bagci, Ulas</creatorcontrib><description>The cuneiform script provides a glimpse into our ancient history. However, reading age-old clay tablets is time-consuming and requires years of training. To simplify this process, we propose a deep-learning based sign detector that locates and classifies cuneiform signs in images of clay tablets. Deep learning requires large amounts of training data in the form of bounding boxes around cuneiform signs, which are not readily available and costly to obtain in the case of cuneiform script. To tackle this problem, we make use of existing transliterations, a sign-by-sign representation of the tablet content in Latin script. Since these do not provide sign localization, we propose a weakly supervised approach: We align tablet images with their corresponding transliterations to localize the transliterated signs in the tablet image, before using these localized signs in place of annotations to re-train the sign detector. A better sign detector in turn boosts the quality of the alignments. We combine these steps in an iterative process that enables training a cuneiform sign detector from transliterations only. While our method works weakly supervised, a small number of annotations further boost the performance of the cuneiform sign detector which we evaluate on a large collection of clay tablets from the Neo-Assyrian period. To enable experts to directly apply the sign detector in their study of cuneiform texts, we additionally provide a web application for the analysis of clay tablets with a trained cuneiform sign detector.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0243039</identifier><identifier>PMID: 33326435</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Annotations ; Applications programs ; Art galleries &amp; museums ; Biology and Life Sciences ; Boxes ; Clay ; Computer and Information Sciences ; Cuneiform inscriptions ; Deep Learning ; History, Ancient ; Humans ; Identification and classification ; Image processing ; Image Processing, Computer-Assisted - methods ; Interdisciplinary aspects ; Language - history ; Localization ; Machine learning ; Methods ; Middle East ; Neural Networks, Computer ; Reading ; Research and Analysis Methods ; Sensors ; Signs ; Social Sciences ; Tablet computers ; Tablets ; Training ; Transliteration</subject><ispartof>PloS one, 2020-12, Vol.15 (12), p.e0243039-e0243039</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Dencker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Dencker et al 2020 Dencker et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bcc65969a9d36be4a8054f7c89c116e4ca50266ce355db3406e703a3224caba63</citedby><cites>FETCH-LOGICAL-c692t-bcc65969a9d36be4a8054f7c89c116e4ca50266ce355db3406e703a3224caba63</cites><orcidid>0000-0003-4237-2710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7743970/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7743970/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33326435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bagci, Ulas</contributor><creatorcontrib>Dencker, Tobias</creatorcontrib><creatorcontrib>Klinkisch, Pablo</creatorcontrib><creatorcontrib>Maul, Stefan M</creatorcontrib><creatorcontrib>Ommer, Björn</creatorcontrib><title>Deep learning of cuneiform sign detection with weak supervision using transliteration alignment</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The cuneiform script provides a glimpse into our ancient history. However, reading age-old clay tablets is time-consuming and requires years of training. To simplify this process, we propose a deep-learning based sign detector that locates and classifies cuneiform signs in images of clay tablets. Deep learning requires large amounts of training data in the form of bounding boxes around cuneiform signs, which are not readily available and costly to obtain in the case of cuneiform script. To tackle this problem, we make use of existing transliterations, a sign-by-sign representation of the tablet content in Latin script. Since these do not provide sign localization, we propose a weakly supervised approach: We align tablet images with their corresponding transliterations to localize the transliterated signs in the tablet image, before using these localized signs in place of annotations to re-train the sign detector. A better sign detector in turn boosts the quality of the alignments. We combine these steps in an iterative process that enables training a cuneiform sign detector from transliterations only. While our method works weakly supervised, a small number of annotations further boost the performance of the cuneiform sign detector which we evaluate on a large collection of clay tablets from the Neo-Assyrian period. To enable experts to directly apply the sign detector in their study of cuneiform texts, we additionally provide a web application for the analysis of clay tablets with a trained cuneiform sign detector.</description><subject>Annotations</subject><subject>Applications programs</subject><subject>Art galleries &amp; museums</subject><subject>Biology and Life Sciences</subject><subject>Boxes</subject><subject>Clay</subject><subject>Computer and Information Sciences</subject><subject>Cuneiform inscriptions</subject><subject>Deep Learning</subject><subject>History, Ancient</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Interdisciplinary aspects</subject><subject>Language - history</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Middle East</subject><subject>Neural Networks, Computer</subject><subject>Reading</subject><subject>Research and Analysis Methods</subject><subject>Sensors</subject><subject>Signs</subject><subject>Social Sciences</subject><subject>Tablet computers</subject><subject>Tablets</subject><subject>Training</subject><subject>Transliteration</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01r3DAQhk1padJt_0FpDYXSHnYrS7ZkXwoh6cdCINCvq5DlsVdbWdpIcpL--8pZJ6xLDsUHmdHzvtKMZpLkZYZWGWHZh60dnBF6tbMGVgjnBJHqUXKcVQQvKUbk8cH_UfLM-y1CBSkpfZocEUIwzUlxnPAzgF2qQTijTJfaNpWDAdVa16dedSZtIIAMypr0WoVNeg3id-qHHbgr5cfo4EddcMJ4rQI4ccsKHbU9mPA8edIK7eHFtC6Sn58__Tj9ujy_-LI-PTlfSlrhsKylpEVFK1E1hNaQixIVectkWckso5BLUSBMqQRSFE1NckSBISIIxnGrFpQsktd73522nk-18RznDFFUUowjsd4TjRVbvnOqF-4Pt0Lx24B1HRcuKKmBU9EWDUYZkm2dy4zWBBBrG0lkWTBM2-j1cTptqHtoZEzUCT0zne8YteGdveKM5aSKN18k7yYDZy8H8IH3ykvQWhiww_7eZcUYKyP65h_04ewmqhMxAWVaG8-Voyk_oXl8d4KqsUqrB6j4NdArGRupVTE-E7yfCSIT4CZ0YvCer79_-3_24tecfXvAbkDosPFWD2Pz-DmY70HprPcO2vsiZ4iPc3BXDT7OAZ_mIMpeHT7Qveiu8clfd-YEHQ</recordid><startdate>20201216</startdate><enddate>20201216</enddate><creator>Dencker, Tobias</creator><creator>Klinkisch, Pablo</creator><creator>Maul, Stefan M</creator><creator>Ommer, Björn</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4237-2710</orcidid></search><sort><creationdate>20201216</creationdate><title>Deep learning of cuneiform sign detection with weak supervision using transliteration alignment</title><author>Dencker, Tobias ; Klinkisch, Pablo ; Maul, Stefan M ; Ommer, Björn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bcc65969a9d36be4a8054f7c89c116e4ca50266ce355db3406e703a3224caba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Applications programs</topic><topic>Art galleries &amp; museums</topic><topic>Biology and Life Sciences</topic><topic>Boxes</topic><topic>Clay</topic><topic>Computer and Information Sciences</topic><topic>Cuneiform inscriptions</topic><topic>Deep Learning</topic><topic>History, Ancient</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Interdisciplinary aspects</topic><topic>Language - history</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Middle East</topic><topic>Neural Networks, Computer</topic><topic>Reading</topic><topic>Research and Analysis Methods</topic><topic>Sensors</topic><topic>Signs</topic><topic>Social Sciences</topic><topic>Tablet computers</topic><topic>Tablets</topic><topic>Training</topic><topic>Transliteration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dencker, Tobias</creatorcontrib><creatorcontrib>Klinkisch, Pablo</creatorcontrib><creatorcontrib>Maul, Stefan M</creatorcontrib><creatorcontrib>Ommer, Björn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dencker, Tobias</au><au>Klinkisch, Pablo</au><au>Maul, Stefan M</au><au>Ommer, Björn</au><au>Bagci, Ulas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning of cuneiform sign detection with weak supervision using transliteration alignment</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-12-16</date><risdate>2020</risdate><volume>15</volume><issue>12</issue><spage>e0243039</spage><epage>e0243039</epage><pages>e0243039-e0243039</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The cuneiform script provides a glimpse into our ancient history. However, reading age-old clay tablets is time-consuming and requires years of training. To simplify this process, we propose a deep-learning based sign detector that locates and classifies cuneiform signs in images of clay tablets. Deep learning requires large amounts of training data in the form of bounding boxes around cuneiform signs, which are not readily available and costly to obtain in the case of cuneiform script. To tackle this problem, we make use of existing transliterations, a sign-by-sign representation of the tablet content in Latin script. Since these do not provide sign localization, we propose a weakly supervised approach: We align tablet images with their corresponding transliterations to localize the transliterated signs in the tablet image, before using these localized signs in place of annotations to re-train the sign detector. A better sign detector in turn boosts the quality of the alignments. We combine these steps in an iterative process that enables training a cuneiform sign detector from transliterations only. While our method works weakly supervised, a small number of annotations further boost the performance of the cuneiform sign detector which we evaluate on a large collection of clay tablets from the Neo-Assyrian period. To enable experts to directly apply the sign detector in their study of cuneiform texts, we additionally provide a web application for the analysis of clay tablets with a trained cuneiform sign detector.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33326435</pmid><doi>10.1371/journal.pone.0243039</doi><tpages>e0243039</tpages><orcidid>https://orcid.org/0000-0003-4237-2710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-12, Vol.15 (12), p.e0243039-e0243039
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2470608622
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Annotations
Applications programs
Art galleries & museums
Biology and Life Sciences
Boxes
Clay
Computer and Information Sciences
Cuneiform inscriptions
Deep Learning
History, Ancient
Humans
Identification and classification
Image processing
Image Processing, Computer-Assisted - methods
Interdisciplinary aspects
Language - history
Localization
Machine learning
Methods
Middle East
Neural Networks, Computer
Reading
Research and Analysis Methods
Sensors
Signs
Social Sciences
Tablet computers
Tablets
Training
Transliteration
title Deep learning of cuneiform sign detection with weak supervision using transliteration alignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20of%20cuneiform%20sign%20detection%20with%20weak%20supervision%20using%20transliteration%20alignment&rft.jtitle=PloS%20one&rft.au=Dencker,%20Tobias&rft.date=2020-12-16&rft.volume=15&rft.issue=12&rft.spage=e0243039&rft.epage=e0243039&rft.pages=e0243039-e0243039&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0243039&rft_dat=%3Cgale_plos_%3EA645383096%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470608622&rft_id=info:pmid/33326435&rft_galeid=A645383096&rft_doaj_id=oai_doaj_org_article_6af5d2010cfb4c16b3e07fdc3c85726f&rfr_iscdi=true