Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys
In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characte...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-12, Vol.15 (12), p.e0242322-e0242322 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0242322 |
---|---|
container_issue | 12 |
container_start_page | e0242322 |
container_title | PloS one |
container_volume | 15 |
creator | Qian, Chenhao Qiu, Yuanhe He, Ziyang Mu, Weiwei Tang, Yongmeng Wang, Haijun Xie, Mengmeng Ji, Weixi |
description | In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characteristics of the dendrites and the hard phase, Cr23C6, into the initial single-phase face-centered cubic (FCC) matrix becomes gradually visible as the carbon content increases from 0 to 4%. The crystal phase variations lead to a non-linear orientation of the microstructure, to a refinement of the grains, and to a higher elastic modulus. This study presents the solid saturation limit of the interstitial carbon atoms in such alloys and establishes an empirical relation between an alloy's elastic modulus and its carbon content. |
doi_str_mv | 10.1371/journal.pone.0242322 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2468643025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A644395117</galeid><doaj_id>oai_doaj_org_article_11aea492aa554c35a87d160cef8d9723</doaj_id><sourcerecordid>A644395117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-546686cfcc0d15011a68c341d39afc6a288a6bef3e5beaab7781080aa0121323</originalsourceid><addsrcrecordid>eNqNk99v0zAQxyMEYmPwHyCIhITgocU_Eid5QZqqDSoNTYKJV-vqXFpPjl1sB7H_HrfNpgbtAeXBlv35fs93ucuy15TMKa_op1s3eAtmvnUW54QVjDP2JDulDWczwQh_erQ_yV6EcEtIyWshnmcnnLNG8JqdZt1F16GKIXddrm1EH6KOGkyuwK-czSG6Pl3aPOKfOHjMQ_SD2u_AtnmPagNWqyTYerdFHzXuvS7xm124hc_BGHcXXmbPOjABX43rWXZzeXGz-Dq7uv6yXJxfzZRoWJyVhRC1UJ1SpKUloRRErXhBW95ApwSwugaxwo5juUKAVVXVlNQEgFBGOeNn2duD7da4IMcKBcmK5FpwwspELA9E6-BWbr3uwd9JB1ruD5xfS0hJKIMyRUcoGgZQloXiJdRVSwVR2NVtUzGevD6P0YZVj61CGz2Yien0xuqNXLvfsqrSS0qaDD6MBt79GjBE2eug0Biw6Ib9uxtS1awkCX33D_p4diO1hpSAtp1LcdXOVJ6LouBNSWmVqPkjVPpa7LVK7dTpdD4RfJwIErNrhzUMIcjlj-__z17_nLLvj9gNgomb4MwQtbNhChYHUHkXgsfuociUyN003FdD7qZBjtOQZG-Of9CD6L79-V8NZwUx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468643025</pqid></control><display><type>article</type><title>Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Qian, Chenhao ; Qiu, Yuanhe ; He, Ziyang ; Mu, Weiwei ; Tang, Yongmeng ; Wang, Haijun ; Xie, Mengmeng ; Ji, Weixi</creator><creatorcontrib>Qian, Chenhao ; Qiu, Yuanhe ; He, Ziyang ; Mu, Weiwei ; Tang, Yongmeng ; Wang, Haijun ; Xie, Mengmeng ; Ji, Weixi</creatorcontrib><description>In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characteristics of the dendrites and the hard phase, Cr23C6, into the initial single-phase face-centered cubic (FCC) matrix becomes gradually visible as the carbon content increases from 0 to 4%. The crystal phase variations lead to a non-linear orientation of the microstructure, to a refinement of the grains, and to a higher elastic modulus. This study presents the solid saturation limit of the interstitial carbon atoms in such alloys and establishes an empirical relation between an alloy's elastic modulus and its carbon content.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242322</identifier><identifier>PMID: 33296382</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alloys ; Alloys - chemistry ; Atomic properties ; Atomic structure ; Biology and Life Sciences ; Carbon ; Carbon - chemistry ; Carbon content ; Chemical properties ; Chromium - chemistry ; Cobalt - chemistry ; Crystal structure ; Dendrites ; Diffraction patterns ; Elastic limit ; Elastic Modulus ; Electric arc melting ; Empirical analysis ; Entropy ; Face centered cubic lattice ; Grain size ; High entropy alloys ; Iron - chemistry ; Laboratories ; Manganese - chemistry ; Materials ; Materials Testing ; Mechanical engineering ; Mechanical properties ; Modulus of elasticity ; Phase variations ; Physical Sciences ; Production processes ; Transition metal compounds ; Vacuum arc melting ; X-Ray Diffraction</subject><ispartof>PloS one, 2020-12, Vol.15 (12), p.e0242322-e0242322</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Qian et al 2020 Qian et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-546686cfcc0d15011a68c341d39afc6a288a6bef3e5beaab7781080aa0121323</citedby><cites>FETCH-LOGICAL-c692t-546686cfcc0d15011a68c341d39afc6a288a6bef3e5beaab7781080aa0121323</cites><orcidid>0000-0002-3537-4278 ; 0000-0003-2039-2884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725351/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725351/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33296382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Chenhao</creatorcontrib><creatorcontrib>Qiu, Yuanhe</creatorcontrib><creatorcontrib>He, Ziyang</creatorcontrib><creatorcontrib>Mu, Weiwei</creatorcontrib><creatorcontrib>Tang, Yongmeng</creatorcontrib><creatorcontrib>Wang, Haijun</creatorcontrib><creatorcontrib>Xie, Mengmeng</creatorcontrib><creatorcontrib>Ji, Weixi</creatorcontrib><title>Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characteristics of the dendrites and the hard phase, Cr23C6, into the initial single-phase face-centered cubic (FCC) matrix becomes gradually visible as the carbon content increases from 0 to 4%. The crystal phase variations lead to a non-linear orientation of the microstructure, to a refinement of the grains, and to a higher elastic modulus. This study presents the solid saturation limit of the interstitial carbon atoms in such alloys and establishes an empirical relation between an alloy's elastic modulus and its carbon content.</description><subject>Alloys</subject><subject>Alloys - chemistry</subject><subject>Atomic properties</subject><subject>Atomic structure</subject><subject>Biology and Life Sciences</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Carbon content</subject><subject>Chemical properties</subject><subject>Chromium - chemistry</subject><subject>Cobalt - chemistry</subject><subject>Crystal structure</subject><subject>Dendrites</subject><subject>Diffraction patterns</subject><subject>Elastic limit</subject><subject>Elastic Modulus</subject><subject>Electric arc melting</subject><subject>Empirical analysis</subject><subject>Entropy</subject><subject>Face centered cubic lattice</subject><subject>Grain size</subject><subject>High entropy alloys</subject><subject>Iron - chemistry</subject><subject>Laboratories</subject><subject>Manganese - chemistry</subject><subject>Materials</subject><subject>Materials Testing</subject><subject>Mechanical engineering</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Phase variations</subject><subject>Physical Sciences</subject><subject>Production processes</subject><subject>Transition metal compounds</subject><subject>Vacuum arc melting</subject><subject>X-Ray Diffraction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99v0zAQxyMEYmPwHyCIhITgocU_Eid5QZqqDSoNTYKJV-vqXFpPjl1sB7H_HrfNpgbtAeXBlv35fs93ucuy15TMKa_op1s3eAtmvnUW54QVjDP2JDulDWczwQh_erQ_yV6EcEtIyWshnmcnnLNG8JqdZt1F16GKIXddrm1EH6KOGkyuwK-czSG6Pl3aPOKfOHjMQ_SD2u_AtnmPagNWqyTYerdFHzXuvS7xm124hc_BGHcXXmbPOjABX43rWXZzeXGz-Dq7uv6yXJxfzZRoWJyVhRC1UJ1SpKUloRRErXhBW95ApwSwugaxwo5juUKAVVXVlNQEgFBGOeNn2duD7da4IMcKBcmK5FpwwspELA9E6-BWbr3uwd9JB1ruD5xfS0hJKIMyRUcoGgZQloXiJdRVSwVR2NVtUzGevD6P0YZVj61CGz2Yien0xuqNXLvfsqrSS0qaDD6MBt79GjBE2eug0Biw6Ib9uxtS1awkCX33D_p4diO1hpSAtp1LcdXOVJ6LouBNSWmVqPkjVPpa7LVK7dTpdD4RfJwIErNrhzUMIcjlj-__z17_nLLvj9gNgomb4MwQtbNhChYHUHkXgsfuociUyN003FdD7qZBjtOQZG-Of9CD6L79-V8NZwUx</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Qian, Chenhao</creator><creator>Qiu, Yuanhe</creator><creator>He, Ziyang</creator><creator>Mu, Weiwei</creator><creator>Tang, Yongmeng</creator><creator>Wang, Haijun</creator><creator>Xie, Mengmeng</creator><creator>Ji, Weixi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3537-4278</orcidid><orcidid>https://orcid.org/0000-0003-2039-2884</orcidid></search><sort><creationdate>20201209</creationdate><title>Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys</title><author>Qian, Chenhao ; Qiu, Yuanhe ; He, Ziyang ; Mu, Weiwei ; Tang, Yongmeng ; Wang, Haijun ; Xie, Mengmeng ; Ji, Weixi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-546686cfcc0d15011a68c341d39afc6a288a6bef3e5beaab7781080aa0121323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Alloys - chemistry</topic><topic>Atomic properties</topic><topic>Atomic structure</topic><topic>Biology and Life Sciences</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Carbon content</topic><topic>Chemical properties</topic><topic>Chromium - chemistry</topic><topic>Cobalt - chemistry</topic><topic>Crystal structure</topic><topic>Dendrites</topic><topic>Diffraction patterns</topic><topic>Elastic limit</topic><topic>Elastic Modulus</topic><topic>Electric arc melting</topic><topic>Empirical analysis</topic><topic>Entropy</topic><topic>Face centered cubic lattice</topic><topic>Grain size</topic><topic>High entropy alloys</topic><topic>Iron - chemistry</topic><topic>Laboratories</topic><topic>Manganese - chemistry</topic><topic>Materials</topic><topic>Materials Testing</topic><topic>Mechanical engineering</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Phase variations</topic><topic>Physical Sciences</topic><topic>Production processes</topic><topic>Transition metal compounds</topic><topic>Vacuum arc melting</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Chenhao</creatorcontrib><creatorcontrib>Qiu, Yuanhe</creatorcontrib><creatorcontrib>He, Ziyang</creatorcontrib><creatorcontrib>Mu, Weiwei</creatorcontrib><creatorcontrib>Tang, Yongmeng</creatorcontrib><creatorcontrib>Wang, Haijun</creatorcontrib><creatorcontrib>Xie, Mengmeng</creatorcontrib><creatorcontrib>Ji, Weixi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Chenhao</au><au>Qiu, Yuanhe</au><au>He, Ziyang</au><au>Mu, Weiwei</au><au>Tang, Yongmeng</au><au>Wang, Haijun</au><au>Xie, Mengmeng</au><au>Ji, Weixi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>15</volume><issue>12</issue><spage>e0242322</spage><epage>e0242322</epage><pages>e0242322-e0242322</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characteristics of the dendrites and the hard phase, Cr23C6, into the initial single-phase face-centered cubic (FCC) matrix becomes gradually visible as the carbon content increases from 0 to 4%. The crystal phase variations lead to a non-linear orientation of the microstructure, to a refinement of the grains, and to a higher elastic modulus. This study presents the solid saturation limit of the interstitial carbon atoms in such alloys and establishes an empirical relation between an alloy's elastic modulus and its carbon content.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33296382</pmid><doi>10.1371/journal.pone.0242322</doi><tpages>e0242322</tpages><orcidid>https://orcid.org/0000-0002-3537-4278</orcidid><orcidid>https://orcid.org/0000-0003-2039-2884</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-12, Vol.15 (12), p.e0242322-e0242322 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2468643025 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Alloys Alloys - chemistry Atomic properties Atomic structure Biology and Life Sciences Carbon Carbon - chemistry Carbon content Chemical properties Chromium - chemistry Cobalt - chemistry Crystal structure Dendrites Diffraction patterns Elastic limit Elastic Modulus Electric arc melting Empirical analysis Entropy Face centered cubic lattice Grain size High entropy alloys Iron - chemistry Laboratories Manganese - chemistry Materials Materials Testing Mechanical engineering Mechanical properties Modulus of elasticity Phase variations Physical Sciences Production processes Transition metal compounds Vacuum arc melting X-Ray Diffraction |
title | Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20interstitial%20carbon%20atoms%20on%20texture%20structure%20and%20mechanical%20properties%20of%20FeMnCoCr%20alloys&rft.jtitle=PloS%20one&rft.au=Qian,%20Chenhao&rft.date=2020-12-09&rft.volume=15&rft.issue=12&rft.spage=e0242322&rft.epage=e0242322&rft.pages=e0242322-e0242322&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242322&rft_dat=%3Cgale_plos_%3EA644395117%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468643025&rft_id=info:pmid/33296382&rft_galeid=A644395117&rft_doaj_id=oai_doaj_org_article_11aea492aa554c35a87d160cef8d9723&rfr_iscdi=true |