Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys

In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-12, Vol.15 (12), p.e0242322-e0242322
Hauptverfasser: Qian, Chenhao, Qiu, Yuanhe, He, Ziyang, Mu, Weiwei, Tang, Yongmeng, Wang, Haijun, Xie, Mengmeng, Ji, Weixi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0242322
container_issue 12
container_start_page e0242322
container_title PloS one
container_volume 15
creator Qian, Chenhao
Qiu, Yuanhe
He, Ziyang
Mu, Weiwei
Tang, Yongmeng
Wang, Haijun
Xie, Mengmeng
Ji, Weixi
description In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characteristics of the dendrites and the hard phase, Cr23C6, into the initial single-phase face-centered cubic (FCC) matrix becomes gradually visible as the carbon content increases from 0 to 4%. The crystal phase variations lead to a non-linear orientation of the microstructure, to a refinement of the grains, and to a higher elastic modulus. This study presents the solid saturation limit of the interstitial carbon atoms in such alloys and establishes an empirical relation between an alloy's elastic modulus and its carbon content.
doi_str_mv 10.1371/journal.pone.0242322
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2468643025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A644395117</galeid><doaj_id>oai_doaj_org_article_11aea492aa554c35a87d160cef8d9723</doaj_id><sourcerecordid>A644395117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-546686cfcc0d15011a68c341d39afc6a288a6bef3e5beaab7781080aa0121323</originalsourceid><addsrcrecordid>eNqNk99v0zAQxyMEYmPwHyCIhITgocU_Eid5QZqqDSoNTYKJV-vqXFpPjl1sB7H_HrfNpgbtAeXBlv35fs93ucuy15TMKa_op1s3eAtmvnUW54QVjDP2JDulDWczwQh_erQ_yV6EcEtIyWshnmcnnLNG8JqdZt1F16GKIXddrm1EH6KOGkyuwK-czSG6Pl3aPOKfOHjMQ_SD2u_AtnmPagNWqyTYerdFHzXuvS7xm124hc_BGHcXXmbPOjABX43rWXZzeXGz-Dq7uv6yXJxfzZRoWJyVhRC1UJ1SpKUloRRErXhBW95ApwSwugaxwo5juUKAVVXVlNQEgFBGOeNn2duD7da4IMcKBcmK5FpwwspELA9E6-BWbr3uwd9JB1ruD5xfS0hJKIMyRUcoGgZQloXiJdRVSwVR2NVtUzGevD6P0YZVj61CGz2Yien0xuqNXLvfsqrSS0qaDD6MBt79GjBE2eug0Biw6Ib9uxtS1awkCX33D_p4diO1hpSAtp1LcdXOVJ6LouBNSWmVqPkjVPpa7LVK7dTpdD4RfJwIErNrhzUMIcjlj-__z17_nLLvj9gNgomb4MwQtbNhChYHUHkXgsfuociUyN003FdD7qZBjtOQZG-Of9CD6L79-V8NZwUx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468643025</pqid></control><display><type>article</type><title>Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Qian, Chenhao ; Qiu, Yuanhe ; He, Ziyang ; Mu, Weiwei ; Tang, Yongmeng ; Wang, Haijun ; Xie, Mengmeng ; Ji, Weixi</creator><creatorcontrib>Qian, Chenhao ; Qiu, Yuanhe ; He, Ziyang ; Mu, Weiwei ; Tang, Yongmeng ; Wang, Haijun ; Xie, Mengmeng ; Ji, Weixi</creatorcontrib><description>In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characteristics of the dendrites and the hard phase, Cr23C6, into the initial single-phase face-centered cubic (FCC) matrix becomes gradually visible as the carbon content increases from 0 to 4%. The crystal phase variations lead to a non-linear orientation of the microstructure, to a refinement of the grains, and to a higher elastic modulus. This study presents the solid saturation limit of the interstitial carbon atoms in such alloys and establishes an empirical relation between an alloy's elastic modulus and its carbon content.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242322</identifier><identifier>PMID: 33296382</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alloys ; Alloys - chemistry ; Atomic properties ; Atomic structure ; Biology and Life Sciences ; Carbon ; Carbon - chemistry ; Carbon content ; Chemical properties ; Chromium - chemistry ; Cobalt - chemistry ; Crystal structure ; Dendrites ; Diffraction patterns ; Elastic limit ; Elastic Modulus ; Electric arc melting ; Empirical analysis ; Entropy ; Face centered cubic lattice ; Grain size ; High entropy alloys ; Iron - chemistry ; Laboratories ; Manganese - chemistry ; Materials ; Materials Testing ; Mechanical engineering ; Mechanical properties ; Modulus of elasticity ; Phase variations ; Physical Sciences ; Production processes ; Transition metal compounds ; Vacuum arc melting ; X-Ray Diffraction</subject><ispartof>PloS one, 2020-12, Vol.15 (12), p.e0242322-e0242322</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Qian et al 2020 Qian et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-546686cfcc0d15011a68c341d39afc6a288a6bef3e5beaab7781080aa0121323</citedby><cites>FETCH-LOGICAL-c692t-546686cfcc0d15011a68c341d39afc6a288a6bef3e5beaab7781080aa0121323</cites><orcidid>0000-0002-3537-4278 ; 0000-0003-2039-2884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725351/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725351/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33296382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Chenhao</creatorcontrib><creatorcontrib>Qiu, Yuanhe</creatorcontrib><creatorcontrib>He, Ziyang</creatorcontrib><creatorcontrib>Mu, Weiwei</creatorcontrib><creatorcontrib>Tang, Yongmeng</creatorcontrib><creatorcontrib>Wang, Haijun</creatorcontrib><creatorcontrib>Xie, Mengmeng</creatorcontrib><creatorcontrib>Ji, Weixi</creatorcontrib><title>Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characteristics of the dendrites and the hard phase, Cr23C6, into the initial single-phase face-centered cubic (FCC) matrix becomes gradually visible as the carbon content increases from 0 to 4%. The crystal phase variations lead to a non-linear orientation of the microstructure, to a refinement of the grains, and to a higher elastic modulus. This study presents the solid saturation limit of the interstitial carbon atoms in such alloys and establishes an empirical relation between an alloy's elastic modulus and its carbon content.</description><subject>Alloys</subject><subject>Alloys - chemistry</subject><subject>Atomic properties</subject><subject>Atomic structure</subject><subject>Biology and Life Sciences</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Carbon content</subject><subject>Chemical properties</subject><subject>Chromium - chemistry</subject><subject>Cobalt - chemistry</subject><subject>Crystal structure</subject><subject>Dendrites</subject><subject>Diffraction patterns</subject><subject>Elastic limit</subject><subject>Elastic Modulus</subject><subject>Electric arc melting</subject><subject>Empirical analysis</subject><subject>Entropy</subject><subject>Face centered cubic lattice</subject><subject>Grain size</subject><subject>High entropy alloys</subject><subject>Iron - chemistry</subject><subject>Laboratories</subject><subject>Manganese - chemistry</subject><subject>Materials</subject><subject>Materials Testing</subject><subject>Mechanical engineering</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Phase variations</subject><subject>Physical Sciences</subject><subject>Production processes</subject><subject>Transition metal compounds</subject><subject>Vacuum arc melting</subject><subject>X-Ray Diffraction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99v0zAQxyMEYmPwHyCIhITgocU_Eid5QZqqDSoNTYKJV-vqXFpPjl1sB7H_HrfNpgbtAeXBlv35fs93ucuy15TMKa_op1s3eAtmvnUW54QVjDP2JDulDWczwQh_erQ_yV6EcEtIyWshnmcnnLNG8JqdZt1F16GKIXddrm1EH6KOGkyuwK-czSG6Pl3aPOKfOHjMQ_SD2u_AtnmPagNWqyTYerdFHzXuvS7xm124hc_BGHcXXmbPOjABX43rWXZzeXGz-Dq7uv6yXJxfzZRoWJyVhRC1UJ1SpKUloRRErXhBW95ApwSwugaxwo5juUKAVVXVlNQEgFBGOeNn2duD7da4IMcKBcmK5FpwwspELA9E6-BWbr3uwd9JB1ruD5xfS0hJKIMyRUcoGgZQloXiJdRVSwVR2NVtUzGevD6P0YZVj61CGz2Yien0xuqNXLvfsqrSS0qaDD6MBt79GjBE2eug0Biw6Ib9uxtS1awkCX33D_p4diO1hpSAtp1LcdXOVJ6LouBNSWmVqPkjVPpa7LVK7dTpdD4RfJwIErNrhzUMIcjlj-__z17_nLLvj9gNgomb4MwQtbNhChYHUHkXgsfuociUyN003FdD7qZBjtOQZG-Of9CD6L79-V8NZwUx</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Qian, Chenhao</creator><creator>Qiu, Yuanhe</creator><creator>He, Ziyang</creator><creator>Mu, Weiwei</creator><creator>Tang, Yongmeng</creator><creator>Wang, Haijun</creator><creator>Xie, Mengmeng</creator><creator>Ji, Weixi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3537-4278</orcidid><orcidid>https://orcid.org/0000-0003-2039-2884</orcidid></search><sort><creationdate>20201209</creationdate><title>Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys</title><author>Qian, Chenhao ; Qiu, Yuanhe ; He, Ziyang ; Mu, Weiwei ; Tang, Yongmeng ; Wang, Haijun ; Xie, Mengmeng ; Ji, Weixi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-546686cfcc0d15011a68c341d39afc6a288a6bef3e5beaab7781080aa0121323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Alloys - chemistry</topic><topic>Atomic properties</topic><topic>Atomic structure</topic><topic>Biology and Life Sciences</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Carbon content</topic><topic>Chemical properties</topic><topic>Chromium - chemistry</topic><topic>Cobalt - chemistry</topic><topic>Crystal structure</topic><topic>Dendrites</topic><topic>Diffraction patterns</topic><topic>Elastic limit</topic><topic>Elastic Modulus</topic><topic>Electric arc melting</topic><topic>Empirical analysis</topic><topic>Entropy</topic><topic>Face centered cubic lattice</topic><topic>Grain size</topic><topic>High entropy alloys</topic><topic>Iron - chemistry</topic><topic>Laboratories</topic><topic>Manganese - chemistry</topic><topic>Materials</topic><topic>Materials Testing</topic><topic>Mechanical engineering</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Phase variations</topic><topic>Physical Sciences</topic><topic>Production processes</topic><topic>Transition metal compounds</topic><topic>Vacuum arc melting</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Chenhao</creatorcontrib><creatorcontrib>Qiu, Yuanhe</creatorcontrib><creatorcontrib>He, Ziyang</creatorcontrib><creatorcontrib>Mu, Weiwei</creatorcontrib><creatorcontrib>Tang, Yongmeng</creatorcontrib><creatorcontrib>Wang, Haijun</creatorcontrib><creatorcontrib>Xie, Mengmeng</creatorcontrib><creatorcontrib>Ji, Weixi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Chenhao</au><au>Qiu, Yuanhe</au><au>He, Ziyang</au><au>Mu, Weiwei</au><au>Tang, Yongmeng</au><au>Wang, Haijun</au><au>Xie, Mengmeng</au><au>Ji, Weixi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>15</volume><issue>12</issue><spage>e0242322</spage><epage>e0242322</epage><pages>e0242322-e0242322</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characteristics of the dendrites and the hard phase, Cr23C6, into the initial single-phase face-centered cubic (FCC) matrix becomes gradually visible as the carbon content increases from 0 to 4%. The crystal phase variations lead to a non-linear orientation of the microstructure, to a refinement of the grains, and to a higher elastic modulus. This study presents the solid saturation limit of the interstitial carbon atoms in such alloys and establishes an empirical relation between an alloy's elastic modulus and its carbon content.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33296382</pmid><doi>10.1371/journal.pone.0242322</doi><tpages>e0242322</tpages><orcidid>https://orcid.org/0000-0002-3537-4278</orcidid><orcidid>https://orcid.org/0000-0003-2039-2884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-12, Vol.15 (12), p.e0242322-e0242322
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2468643025
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Alloys
Alloys - chemistry
Atomic properties
Atomic structure
Biology and Life Sciences
Carbon
Carbon - chemistry
Carbon content
Chemical properties
Chromium - chemistry
Cobalt - chemistry
Crystal structure
Dendrites
Diffraction patterns
Elastic limit
Elastic Modulus
Electric arc melting
Empirical analysis
Entropy
Face centered cubic lattice
Grain size
High entropy alloys
Iron - chemistry
Laboratories
Manganese - chemistry
Materials
Materials Testing
Mechanical engineering
Mechanical properties
Modulus of elasticity
Phase variations
Physical Sciences
Production processes
Transition metal compounds
Vacuum arc melting
X-Ray Diffraction
title Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20interstitial%20carbon%20atoms%20on%20texture%20structure%20and%20mechanical%20properties%20of%20FeMnCoCr%20alloys&rft.jtitle=PloS%20one&rft.au=Qian,%20Chenhao&rft.date=2020-12-09&rft.volume=15&rft.issue=12&rft.spage=e0242322&rft.epage=e0242322&rft.pages=e0242322-e0242322&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242322&rft_dat=%3Cgale_plos_%3EA644395117%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468643025&rft_id=info:pmid/33296382&rft_galeid=A644395117&rft_doaj_id=oai_doaj_org_article_11aea492aa554c35a87d160cef8d9723&rfr_iscdi=true