Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication

Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-12, Vol.15 (12), p.e0240949
Hauptverfasser: Abreu, Rodrigo, Essler, Lauren, Giri, Pramod, Quinn, Frederick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e0240949
container_title PloS one
container_volume 15
creator Abreu, Rodrigo
Essler, Lauren
Giri, Pramod
Quinn, Frederick
description Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of the intrinsic virulence differences among Listeria monocytogenes, Salmonella enterica and Mycobacterium tuberculosis, these intracellular pathogens share the ability to survive and persist inside the macrophage and other cells and thrive in iron rich environments. Interferon-gamma (IFN-γ) is a central cytokine in host defense against intracellular pathogens and has been shown to promote iron export in macrophages. We hypothesize that IFN-γ decreases iron availability to intracellular pathogens consequently limiting replication in these cells. In this study, we show that IFN-γ regulates the expression of iron-related proteins hepcidin, ferroportin, and ferritin to induce iron export from macrophages. Listeria monocytogenes, S. enterica, and M. tuberculosis infections significantly induce iron sequestration in human macrophages. In contrast, IFN-γ significantly reduces hepcidin secretion in S. enterica and M. tuberculosis infected macrophages. Similarly, IFN-γ-activated macrophages express higher ferroportin levels than untreated controls even after infection with L. monocytogenes bacilli; bacterial infection greatly down-regulates ferroportin expression. Collectively, IFN-γ significantly inhibits pathogen-associated intracellular iron sequestration in macrophages and consequently retards the growth of intracellular bacterial pathogens by decreasing iron availability.
doi_str_mv 10.1371/journal.pone.0240949
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2468208569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A644253423</galeid><doaj_id>oai_doaj_org_article_ee1664a545c44a2bb0abf4c0719710f3</doaj_id><sourcerecordid>A644253423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-53abca95482c332008e02fd86ec03649ef8aaca63bba98f10a53dab84c29fde73</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QLguDFjGmSps2NsCx-DCws-HUbTtOkkyVtapLK-u9Nne4yBQUJIeHkOW8OL2-WPS_QriBV8fbGTX4AuxvdoHYIU8Qpf5CdF5zgLcOIPDy5n2VPQrhBqCQ1Y4-zM0IwR7Rg51m3H6LyWnk3bDvoe8hH73oXVchNquXqdnQ-5mbID1MPQ96D9G48QJeA6HJrejO_Rg9SWTtZ8HkDMkkasLlXozUSonHD0-yRBhvUs-XcZN8-vP96-Wl7df1xf3lxtZWM47gtCTQSeElrLNOQCNUKYd3WTElEGOVK1wASGGka4LUuEJSkhaamEnPdqopsspdH3dG6IBaPgsCU1RjVJeOJ2B-J1sGNGL3pwf8SDoz4U3C-E-CjkVYJpQrGKJS0lJQCbhoEjaYSVQWvCqRJ0nq3_DY1vWqlmo2wK9H1y2AOonM_RVVhgtPeZK8WAe9-TCrEf4y8UB2kqcyg3ex3b4IUF4xSXBKK52F2f6HSalVvZEqJNqm-anizakhMVLexgykEsf_y-f_Z6-9r9vUJe1Bg4yE4O805CGuQHsGUqRC80vfOFUjMIb9zQ8whF0vIU9uLU9fvm-5STX4DfEP5hg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468208569</pqid></control><display><type>article</type><title>Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Abreu, Rodrigo ; Essler, Lauren ; Giri, Pramod ; Quinn, Frederick</creator><contributor>Rottenberg, Martin E.</contributor><creatorcontrib>Abreu, Rodrigo ; Essler, Lauren ; Giri, Pramod ; Quinn, Frederick ; Rottenberg, Martin E.</creatorcontrib><description>Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of the intrinsic virulence differences among Listeria monocytogenes, Salmonella enterica and Mycobacterium tuberculosis, these intracellular pathogens share the ability to survive and persist inside the macrophage and other cells and thrive in iron rich environments. Interferon-gamma (IFN-γ) is a central cytokine in host defense against intracellular pathogens and has been shown to promote iron export in macrophages. We hypothesize that IFN-γ decreases iron availability to intracellular pathogens consequently limiting replication in these cells. In this study, we show that IFN-γ regulates the expression of iron-related proteins hepcidin, ferroportin, and ferritin to induce iron export from macrophages. Listeria monocytogenes, S. enterica, and M. tuberculosis infections significantly induce iron sequestration in human macrophages. In contrast, IFN-γ significantly reduces hepcidin secretion in S. enterica and M. tuberculosis infected macrophages. Similarly, IFN-γ-activated macrophages express higher ferroportin levels than untreated controls even after infection with L. monocytogenes bacilli; bacterial infection greatly down-regulates ferroportin expression. Collectively, IFN-γ significantly inhibits pathogen-associated intracellular iron sequestration in macrophages and consequently retards the growth of intracellular bacterial pathogens by decreasing iron availability.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0240949</identifier><identifier>PMID: 33290416</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Availability ; Bacilli ; Bacteria ; Bacterial diseases ; Bacterial infections ; Biological transport ; Biological Transport, Active - drug effects ; Biology and Life Sciences ; Cation Transport Proteins - metabolism ; Cytokines ; Drug therapy ; Exports ; Ferritin ; Ferritins - metabolism ; Foodborne diseases ; Gastrointestinal diseases ; Genes ; Genetic engineering ; Health aspects ; Hepcidin ; Hepcidins - antagonists &amp; inhibitors ; Hepcidins - metabolism ; Host Microbial Interactions - drug effects ; Host Microbial Interactions - immunology ; Host Microbial Interactions - physiology ; Humans ; Immunity, Innate ; Infections ; Infectious diseases ; Interferon ; Interferon gamma ; Interferon-gamma - immunology ; Interferon-gamma - pharmacology ; Intracellular ; Iron ; Iron (Nutrient) ; Iron - metabolism ; Listeria ; Listeria monocytogenes ; Listeria monocytogenes - growth &amp; development ; Listeria monocytogenes - pathogenicity ; Listeriosis ; Macrophages ; Macrophages - drug effects ; Macrophages - metabolism ; Macrophages - microbiology ; Medicine and Health Sciences ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - growth &amp; development ; Mycobacterium tuberculosis - pathogenicity ; Pathogens ; Proteins ; Recombinant Proteins - pharmacology ; Replication ; Salmonella ; Salmonella enterica ; Salmonella enterica - growth &amp; development ; Salmonella enterica - pathogenicity ; Salmonellosis ; THP-1 Cells ; Tuberculosis ; Virulence ; γ-Interferon</subject><ispartof>PloS one, 2020-12, Vol.15 (12), p.e0240949</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Abreu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Abreu et al 2020 Abreu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-53abca95482c332008e02fd86ec03649ef8aaca63bba98f10a53dab84c29fde73</citedby><cites>FETCH-LOGICAL-c692t-53abca95482c332008e02fd86ec03649ef8aaca63bba98f10a53dab84c29fde73</cites><orcidid>0000-0002-6413-0184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723272/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723272/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33290416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rottenberg, Martin E.</contributor><creatorcontrib>Abreu, Rodrigo</creatorcontrib><creatorcontrib>Essler, Lauren</creatorcontrib><creatorcontrib>Giri, Pramod</creatorcontrib><creatorcontrib>Quinn, Frederick</creatorcontrib><title>Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of the intrinsic virulence differences among Listeria monocytogenes, Salmonella enterica and Mycobacterium tuberculosis, these intracellular pathogens share the ability to survive and persist inside the macrophage and other cells and thrive in iron rich environments. Interferon-gamma (IFN-γ) is a central cytokine in host defense against intracellular pathogens and has been shown to promote iron export in macrophages. We hypothesize that IFN-γ decreases iron availability to intracellular pathogens consequently limiting replication in these cells. In this study, we show that IFN-γ regulates the expression of iron-related proteins hepcidin, ferroportin, and ferritin to induce iron export from macrophages. Listeria monocytogenes, S. enterica, and M. tuberculosis infections significantly induce iron sequestration in human macrophages. In contrast, IFN-γ significantly reduces hepcidin secretion in S. enterica and M. tuberculosis infected macrophages. Similarly, IFN-γ-activated macrophages express higher ferroportin levels than untreated controls even after infection with L. monocytogenes bacilli; bacterial infection greatly down-regulates ferroportin expression. Collectively, IFN-γ significantly inhibits pathogen-associated intracellular iron sequestration in macrophages and consequently retards the growth of intracellular bacterial pathogens by decreasing iron availability.</description><subject>Availability</subject><subject>Bacilli</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Biological transport</subject><subject>Biological Transport, Active - drug effects</subject><subject>Biology and Life Sciences</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cytokines</subject><subject>Drug therapy</subject><subject>Exports</subject><subject>Ferritin</subject><subject>Ferritins - metabolism</subject><subject>Foodborne diseases</subject><subject>Gastrointestinal diseases</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Health aspects</subject><subject>Hepcidin</subject><subject>Hepcidins - antagonists &amp; inhibitors</subject><subject>Hepcidins - metabolism</subject><subject>Host Microbial Interactions - drug effects</subject><subject>Host Microbial Interactions - immunology</subject><subject>Host Microbial Interactions - physiology</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Interferon</subject><subject>Interferon gamma</subject><subject>Interferon-gamma - immunology</subject><subject>Interferon-gamma - pharmacology</subject><subject>Intracellular</subject><subject>Iron</subject><subject>Iron (Nutrient)</subject><subject>Iron - metabolism</subject><subject>Listeria</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - growth &amp; development</subject><subject>Listeria monocytogenes - pathogenicity</subject><subject>Listeriosis</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Medicine and Health Sciences</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - growth &amp; development</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>Pathogens</subject><subject>Proteins</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Replication</subject><subject>Salmonella</subject><subject>Salmonella enterica</subject><subject>Salmonella enterica - growth &amp; development</subject><subject>Salmonella enterica - pathogenicity</subject><subject>Salmonellosis</subject><subject>THP-1 Cells</subject><subject>Tuberculosis</subject><subject>Virulence</subject><subject>γ-Interferon</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QLguDFjGmSps2NsCx-DCws-HUbTtOkkyVtapLK-u9Nne4yBQUJIeHkOW8OL2-WPS_QriBV8fbGTX4AuxvdoHYIU8Qpf5CdF5zgLcOIPDy5n2VPQrhBqCQ1Y4-zM0IwR7Rg51m3H6LyWnk3bDvoe8hH73oXVchNquXqdnQ-5mbID1MPQ96D9G48QJeA6HJrejO_Rg9SWTtZ8HkDMkkasLlXozUSonHD0-yRBhvUs-XcZN8-vP96-Wl7df1xf3lxtZWM47gtCTQSeElrLNOQCNUKYd3WTElEGOVK1wASGGka4LUuEJSkhaamEnPdqopsspdH3dG6IBaPgsCU1RjVJeOJ2B-J1sGNGL3pwf8SDoz4U3C-E-CjkVYJpQrGKJS0lJQCbhoEjaYSVQWvCqRJ0nq3_DY1vWqlmo2wK9H1y2AOonM_RVVhgtPeZK8WAe9-TCrEf4y8UB2kqcyg3ex3b4IUF4xSXBKK52F2f6HSalVvZEqJNqm-anizakhMVLexgykEsf_y-f_Z6-9r9vUJe1Bg4yE4O805CGuQHsGUqRC80vfOFUjMIb9zQ8whF0vIU9uLU9fvm-5STX4DfEP5hg</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>Abreu, Rodrigo</creator><creator>Essler, Lauren</creator><creator>Giri, Pramod</creator><creator>Quinn, Frederick</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6413-0184</orcidid></search><sort><creationdate>20201208</creationdate><title>Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication</title><author>Abreu, Rodrigo ; Essler, Lauren ; Giri, Pramod ; Quinn, Frederick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-53abca95482c332008e02fd86ec03649ef8aaca63bba98f10a53dab84c29fde73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Availability</topic><topic>Bacilli</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Biological transport</topic><topic>Biological Transport, Active - drug effects</topic><topic>Biology and Life Sciences</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cytokines</topic><topic>Drug therapy</topic><topic>Exports</topic><topic>Ferritin</topic><topic>Ferritins - metabolism</topic><topic>Foodborne diseases</topic><topic>Gastrointestinal diseases</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Health aspects</topic><topic>Hepcidin</topic><topic>Hepcidins - antagonists &amp; inhibitors</topic><topic>Hepcidins - metabolism</topic><topic>Host Microbial Interactions - drug effects</topic><topic>Host Microbial Interactions - immunology</topic><topic>Host Microbial Interactions - physiology</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Interferon</topic><topic>Interferon gamma</topic><topic>Interferon-gamma - immunology</topic><topic>Interferon-gamma - pharmacology</topic><topic>Intracellular</topic><topic>Iron</topic><topic>Iron (Nutrient)</topic><topic>Iron - metabolism</topic><topic>Listeria</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - growth &amp; development</topic><topic>Listeria monocytogenes - pathogenicity</topic><topic>Listeriosis</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Medicine and Health Sciences</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - growth &amp; development</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>Pathogens</topic><topic>Proteins</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Replication</topic><topic>Salmonella</topic><topic>Salmonella enterica</topic><topic>Salmonella enterica - growth &amp; development</topic><topic>Salmonella enterica - pathogenicity</topic><topic>Salmonellosis</topic><topic>THP-1 Cells</topic><topic>Tuberculosis</topic><topic>Virulence</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abreu, Rodrigo</creatorcontrib><creatorcontrib>Essler, Lauren</creatorcontrib><creatorcontrib>Giri, Pramod</creatorcontrib><creatorcontrib>Quinn, Frederick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abreu, Rodrigo</au><au>Essler, Lauren</au><au>Giri, Pramod</au><au>Quinn, Frederick</au><au>Rottenberg, Martin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-12-08</date><risdate>2020</risdate><volume>15</volume><issue>12</issue><spage>e0240949</spage><pages>e0240949-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of the intrinsic virulence differences among Listeria monocytogenes, Salmonella enterica and Mycobacterium tuberculosis, these intracellular pathogens share the ability to survive and persist inside the macrophage and other cells and thrive in iron rich environments. Interferon-gamma (IFN-γ) is a central cytokine in host defense against intracellular pathogens and has been shown to promote iron export in macrophages. We hypothesize that IFN-γ decreases iron availability to intracellular pathogens consequently limiting replication in these cells. In this study, we show that IFN-γ regulates the expression of iron-related proteins hepcidin, ferroportin, and ferritin to induce iron export from macrophages. Listeria monocytogenes, S. enterica, and M. tuberculosis infections significantly induce iron sequestration in human macrophages. In contrast, IFN-γ significantly reduces hepcidin secretion in S. enterica and M. tuberculosis infected macrophages. Similarly, IFN-γ-activated macrophages express higher ferroportin levels than untreated controls even after infection with L. monocytogenes bacilli; bacterial infection greatly down-regulates ferroportin expression. Collectively, IFN-γ significantly inhibits pathogen-associated intracellular iron sequestration in macrophages and consequently retards the growth of intracellular bacterial pathogens by decreasing iron availability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33290416</pmid><doi>10.1371/journal.pone.0240949</doi><tpages>e0240949</tpages><orcidid>https://orcid.org/0000-0002-6413-0184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-12, Vol.15 (12), p.e0240949
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2468208569
source PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Availability
Bacilli
Bacteria
Bacterial diseases
Bacterial infections
Biological transport
Biological Transport, Active - drug effects
Biology and Life Sciences
Cation Transport Proteins - metabolism
Cytokines
Drug therapy
Exports
Ferritin
Ferritins - metabolism
Foodborne diseases
Gastrointestinal diseases
Genes
Genetic engineering
Health aspects
Hepcidin
Hepcidins - antagonists & inhibitors
Hepcidins - metabolism
Host Microbial Interactions - drug effects
Host Microbial Interactions - immunology
Host Microbial Interactions - physiology
Humans
Immunity, Innate
Infections
Infectious diseases
Interferon
Interferon gamma
Interferon-gamma - immunology
Interferon-gamma - pharmacology
Intracellular
Iron
Iron (Nutrient)
Iron - metabolism
Listeria
Listeria monocytogenes
Listeria monocytogenes - growth & development
Listeria monocytogenes - pathogenicity
Listeriosis
Macrophages
Macrophages - drug effects
Macrophages - metabolism
Macrophages - microbiology
Medicine and Health Sciences
Mycobacterium tuberculosis
Mycobacterium tuberculosis - growth & development
Mycobacterium tuberculosis - pathogenicity
Pathogens
Proteins
Recombinant Proteins - pharmacology
Replication
Salmonella
Salmonella enterica
Salmonella enterica - growth & development
Salmonella enterica - pathogenicity
Salmonellosis
THP-1 Cells
Tuberculosis
Virulence
γ-Interferon
title Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interferon-gamma%20promotes%20iron%20export%20in%20human%20macrophages%20to%20limit%20intracellular%20bacterial%20replication&rft.jtitle=PloS%20one&rft.au=Abreu,%20Rodrigo&rft.date=2020-12-08&rft.volume=15&rft.issue=12&rft.spage=e0240949&rft.pages=e0240949-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0240949&rft_dat=%3Cgale_plos_%3EA644253423%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468208569&rft_id=info:pmid/33290416&rft_galeid=A644253423&rft_doaj_id=oai_doaj_org_article_ee1664a545c44a2bb0abf4c0719710f3&rfr_iscdi=true