On the authenticity of COVID-19 case figures

In this article, we study the applicability of Benford's law and Zipf's law to national COVID-19 case figures with the aim of establishing guidelines upon which methods of fraud detection in epidemiology, based on formal statistical analysis, can be developed. Moreover, these approaches ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-12, Vol.15 (12), p.e0243123-e0243123
Hauptverfasser: Kennedy, Adrian Patrick, Yam, Sheung Chi Phillip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0243123
container_issue 12
container_start_page e0243123
container_title PloS one
container_volume 15
creator Kennedy, Adrian Patrick
Yam, Sheung Chi Phillip
description In this article, we study the applicability of Benford's law and Zipf's law to national COVID-19 case figures with the aim of establishing guidelines upon which methods of fraud detection in epidemiology, based on formal statistical analysis, can be developed. Moreover, these approaches may also be used in evaluating the performance of public health surveillance systems. We provide theoretical arguments for why the empirical laws should hold in the early stages of an epidemic, along with preliminary empirical evidence in support of these claims. Based on data published by the World Health Organization and various national governments, we find empirical evidence that suggests that both Benford's law and Zipf's law largely hold across countries, and deviations can be readily explained. To the best of our knowledge, this paper is among the first to present a practical application of Zipf's law to fraud detection.
doi_str_mv 10.1371/journal.pone.0243123
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2468200759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A644253410</galeid><doaj_id>oai_doaj_org_article_df78806390f84f1ca50d2e53becd8d35</doaj_id><sourcerecordid>A644253410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b5243106cdd6c67a6070bfd5485bfae3209bab7d60a2142fa58b15e1170ab39e3</originalsourceid><addsrcrecordid>eNqNktmK1EAUhoMozqJvIBoQRMG0p9YkN8LQbg0DDS5zW1RqSVeTTvWkEpl5eyt2ZujIXEhBKpx85z9L_iR5gWCBSI4-bP3QtbJZ7H1rFoApQZg8Sk5RSXDGMZDHR-8nyVkIWwBGCs6fJieE4BIohtPk_bpN-41J5RCfbe-U629Tb9Pl-mr1KUNlqmQwqXX10JnwLHliZRPM8-k-T359-fxz-S27XH9dLS8uM8VL3GcVG7sBrrTmiueSQw6V1YwWrLLSEAxlJatcc5AYUWwlKyrEDEI5yIqUhpwnrw66-8YHMQ0aBKa8wAA5KyOxOhDay63Yd24nu1vhpRN_A76rheziNI0R2uZFAZyUYAtqkZIMNDaMVEbpQhMWtT5O1YZqZ7SKa-hkMxOdf2ndRtT-t8hzTHABUeDtJND568GEXuxcUKZpZGv8cOibc6B07Pv1P-jD001ULeMArrU-1lWjqLjglGJGKBrLLh6g4tFm51R0hXUxPkt4N0uITG9u-loOIYjVj-__z66v5uybI3ZjZNNvgm-G3vk2zEF6AFXnQ-iMvV8yAjGa-m4bYjS1mEwd014e_6D7pDsXkz9PRu4I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468200759</pqid></control><display><type>article</type><title>On the authenticity of COVID-19 case figures</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kennedy, Adrian Patrick ; Yam, Sheung Chi Phillip</creator><contributor>Verdonck, Kristien</contributor><creatorcontrib>Kennedy, Adrian Patrick ; Yam, Sheung Chi Phillip ; Verdonck, Kristien</creatorcontrib><description>In this article, we study the applicability of Benford's law and Zipf's law to national COVID-19 case figures with the aim of establishing guidelines upon which methods of fraud detection in epidemiology, based on formal statistical analysis, can be developed. Moreover, these approaches may also be used in evaluating the performance of public health surveillance systems. We provide theoretical arguments for why the empirical laws should hold in the early stages of an epidemic, along with preliminary empirical evidence in support of these claims. Based on data published by the World Health Organization and various national governments, we find empirical evidence that suggests that both Benford's law and Zipf's law largely hold across countries, and deviations can be readily explained. To the best of our knowledge, this paper is among the first to present a practical application of Zipf's law to fraud detection.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0243123</identifier><identifier>PMID: 33290420</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; Dengue fever ; Economic development ; Empirical analysis ; Epidemics ; Epidemiology ; False information (Law) ; Federal government ; Fraud ; Fraud investigation ; Health surveillance ; Hong Kong ; Humans ; Legislation ; Medicine and Health Sciences ; Methods ; Models, Theoretical ; Pandemics ; Pandemics - statistics &amp; numerical data ; People and Places ; Public health ; Regions ; Reproducibility of Results ; SARS-CoV-2 - pathogenicity ; Severe acute respiratory syndrome coronavirus 2 ; Social Sciences ; Statistical analysis ; Statistics ; Surveillance systems</subject><ispartof>PloS one, 2020-12, Vol.15 (12), p.e0243123-e0243123</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Kennedy, Yam. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Kennedy, Yam 2020 Kennedy, Yam</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b5243106cdd6c67a6070bfd5485bfae3209bab7d60a2142fa58b15e1170ab39e3</citedby><cites>FETCH-LOGICAL-c692t-b5243106cdd6c67a6070bfd5485bfae3209bab7d60a2142fa58b15e1170ab39e3</cites><orcidid>0000-0002-4380-0919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723280/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723280/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33290420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Verdonck, Kristien</contributor><creatorcontrib>Kennedy, Adrian Patrick</creatorcontrib><creatorcontrib>Yam, Sheung Chi Phillip</creatorcontrib><title>On the authenticity of COVID-19 case figures</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this article, we study the applicability of Benford's law and Zipf's law to national COVID-19 case figures with the aim of establishing guidelines upon which methods of fraud detection in epidemiology, based on formal statistical analysis, can be developed. Moreover, these approaches may also be used in evaluating the performance of public health surveillance systems. We provide theoretical arguments for why the empirical laws should hold in the early stages of an epidemic, along with preliminary empirical evidence in support of these claims. Based on data published by the World Health Organization and various national governments, we find empirical evidence that suggests that both Benford's law and Zipf's law largely hold across countries, and deviations can be readily explained. To the best of our knowledge, this paper is among the first to present a practical application of Zipf's law to fraud detection.</description><subject>Analysis</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Dengue fever</subject><subject>Economic development</subject><subject>Empirical analysis</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>False information (Law)</subject><subject>Federal government</subject><subject>Fraud</subject><subject>Fraud investigation</subject><subject>Health surveillance</subject><subject>Hong Kong</subject><subject>Humans</subject><subject>Legislation</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Pandemics</subject><subject>Pandemics - statistics &amp; numerical data</subject><subject>People and Places</subject><subject>Public health</subject><subject>Regions</subject><subject>Reproducibility of Results</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Surveillance systems</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNktmK1EAUhoMozqJvIBoQRMG0p9YkN8LQbg0DDS5zW1RqSVeTTvWkEpl5eyt2ZujIXEhBKpx85z9L_iR5gWCBSI4-bP3QtbJZ7H1rFoApQZg8Sk5RSXDGMZDHR-8nyVkIWwBGCs6fJieE4BIohtPk_bpN-41J5RCfbe-U629Tb9Pl-mr1KUNlqmQwqXX10JnwLHliZRPM8-k-T359-fxz-S27XH9dLS8uM8VL3GcVG7sBrrTmiueSQw6V1YwWrLLSEAxlJatcc5AYUWwlKyrEDEI5yIqUhpwnrw66-8YHMQ0aBKa8wAA5KyOxOhDay63Yd24nu1vhpRN_A76rheziNI0R2uZFAZyUYAtqkZIMNDaMVEbpQhMWtT5O1YZqZ7SKa-hkMxOdf2ndRtT-t8hzTHABUeDtJND568GEXuxcUKZpZGv8cOibc6B07Pv1P-jD001ULeMArrU-1lWjqLjglGJGKBrLLh6g4tFm51R0hXUxPkt4N0uITG9u-loOIYjVj-__z66v5uybI3ZjZNNvgm-G3vk2zEF6AFXnQ-iMvV8yAjGa-m4bYjS1mEwd014e_6D7pDsXkz9PRu4I</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>Kennedy, Adrian Patrick</creator><creator>Yam, Sheung Chi Phillip</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4380-0919</orcidid></search><sort><creationdate>20201208</creationdate><title>On the authenticity of COVID-19 case figures</title><author>Kennedy, Adrian Patrick ; Yam, Sheung Chi Phillip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b5243106cdd6c67a6070bfd5485bfae3209bab7d60a2142fa58b15e1170ab39e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Dengue fever</topic><topic>Economic development</topic><topic>Empirical analysis</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>False information (Law)</topic><topic>Federal government</topic><topic>Fraud</topic><topic>Fraud investigation</topic><topic>Health surveillance</topic><topic>Hong Kong</topic><topic>Humans</topic><topic>Legislation</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Pandemics</topic><topic>Pandemics - statistics &amp; numerical data</topic><topic>People and Places</topic><topic>Public health</topic><topic>Regions</topic><topic>Reproducibility of Results</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Surveillance systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kennedy, Adrian Patrick</creatorcontrib><creatorcontrib>Yam, Sheung Chi Phillip</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kennedy, Adrian Patrick</au><au>Yam, Sheung Chi Phillip</au><au>Verdonck, Kristien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the authenticity of COVID-19 case figures</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-12-08</date><risdate>2020</risdate><volume>15</volume><issue>12</issue><spage>e0243123</spage><epage>e0243123</epage><pages>e0243123-e0243123</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this article, we study the applicability of Benford's law and Zipf's law to national COVID-19 case figures with the aim of establishing guidelines upon which methods of fraud detection in epidemiology, based on formal statistical analysis, can be developed. Moreover, these approaches may also be used in evaluating the performance of public health surveillance systems. We provide theoretical arguments for why the empirical laws should hold in the early stages of an epidemic, along with preliminary empirical evidence in support of these claims. Based on data published by the World Health Organization and various national governments, we find empirical evidence that suggests that both Benford's law and Zipf's law largely hold across countries, and deviations can be readily explained. To the best of our knowledge, this paper is among the first to present a practical application of Zipf's law to fraud detection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33290420</pmid><doi>10.1371/journal.pone.0243123</doi><tpages>e0243123</tpages><orcidid>https://orcid.org/0000-0002-4380-0919</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-12, Vol.15 (12), p.e0243123-e0243123
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2468200759
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Coronaviruses
COVID-19
COVID-19 - epidemiology
Dengue fever
Economic development
Empirical analysis
Epidemics
Epidemiology
False information (Law)
Federal government
Fraud
Fraud investigation
Health surveillance
Hong Kong
Humans
Legislation
Medicine and Health Sciences
Methods
Models, Theoretical
Pandemics
Pandemics - statistics & numerical data
People and Places
Public health
Regions
Reproducibility of Results
SARS-CoV-2 - pathogenicity
Severe acute respiratory syndrome coronavirus 2
Social Sciences
Statistical analysis
Statistics
Surveillance systems
title On the authenticity of COVID-19 case figures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20authenticity%20of%20COVID-19%20case%20figures&rft.jtitle=PloS%20one&rft.au=Kennedy,%20Adrian%20Patrick&rft.date=2020-12-08&rft.volume=15&rft.issue=12&rft.spage=e0243123&rft.epage=e0243123&rft.pages=e0243123-e0243123&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0243123&rft_dat=%3Cgale_plos_%3EA644253410%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468200759&rft_id=info:pmid/33290420&rft_galeid=A644253410&rft_doaj_id=oai_doaj_org_article_df78806390f84f1ca50d2e53becd8d35&rfr_iscdi=true