On the coherence of model-based dose-finding designs for drug combination trials

The concept of coherence was proposed for single-agent phase I clinical trials to describe the property that a design never escalates the dose when the most recently treated patient has toxicity and never de-escalates the dose when the most recently treated patient has no toxicity. It provides a use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-11, Vol.15 (11), p.e0242561
Hauptverfasser: Park, Yeonhee, Liu, Suyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e0242561
container_title PloS one
container_volume 15
creator Park, Yeonhee
Liu, Suyu
description The concept of coherence was proposed for single-agent phase I clinical trials to describe the property that a design never escalates the dose when the most recently treated patient has toxicity and never de-escalates the dose when the most recently treated patient has no toxicity. It provides a useful theoretical tool for investigating the properties of phase I trial designs. In this paper, we generalize the concept of coherence to drug combination trials, which are substantially different and more challenging than single-agent trials. For example, in the dose-combination matrix, each dose has up to 8 neighboring doses as candidates for dose escalation and de-escalation, and the toxicity orders of these doses are only partially known. We derive sufficient conditions for a model-based drug combination trial design to be coherent. Our results are more general and relaxed than the existing results and are applicable to both single-agent and drug combination trials. We illustrate the application of our theoretical results with a number of drug combination dose-finding designs in the literature.
doi_str_mv 10.1371/journal.pone.0242561
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2465725034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643313573</galeid><doaj_id>oai_doaj_org_article_eb72619151904c178adc75cb3e808baa</doaj_id><sourcerecordid>A643313573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-124541a8bbcf3aeda0aa85ab7445398894d7cf8d446d02a66db120783fadb6e33</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLwoIXHfPd9kZYllUHFkb8ug0nH-1kaJsxaUX_vRmnu0xBQXKRcPK8b04Ob5Y9x2iFaYnf7PwUBuhWez_YFSKMcIEfZOe4pqQQBNGHJ-ez7EmMO4Q4rYR4nJ1RSjglAp1nHzdDPm5trv3WBjtom_sm772xXaEgWpMbH23RuMG4oc2Nja4dYt74kJswtUnWKzfA6HyyCQ66-DR71KTNPpv3i-zru5sv1x-K28379fXVbaFFTcYCE8YZhkop3VCwBhBAxUGVjHFaV1XNTKmbyjAmDCIghFGYoLKiDRglLKUX2cuj777zUc7DiJIwwUvCEWWJWB8J42En98H1EH5JD07-KfjQSgij052VVpVE4BpzXCOmcVmB0SXXitoKVQogeb2dX5tUb422wxigW5gubwa3la3_IcsSpe_gZPBqNgj--2Tj-I-WZ6qF1JUbGp_MdO-illeCUYopLw9fX_2FSsvY3ukUh8al-kLweiFIzGh_ji1MMcr150__z26-LdnLE3ZroRu30XfTIQ5xCbIjqIOPMdjmfnIYyUOa76YhD2mWc5qT7MXp1O9Fd_GlvwFE_-8K</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465725034</pqid></control><display><type>article</type><title>On the coherence of model-based dose-finding designs for drug combination trials</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Park, Yeonhee ; Liu, Suyu</creator><contributor>Hutson, Alan D</contributor><creatorcontrib>Park, Yeonhee ; Liu, Suyu ; Hutson, Alan D</creatorcontrib><description>The concept of coherence was proposed for single-agent phase I clinical trials to describe the property that a design never escalates the dose when the most recently treated patient has toxicity and never de-escalates the dose when the most recently treated patient has no toxicity. It provides a useful theoretical tool for investigating the properties of phase I trial designs. In this paper, we generalize the concept of coherence to drug combination trials, which are substantially different and more challenging than single-agent trials. For example, in the dose-combination matrix, each dose has up to 8 neighboring doses as candidates for dose escalation and de-escalation, and the toxicity orders of these doses are only partially known. We derive sufficient conditions for a model-based drug combination trial design to be coherent. Our results are more general and relaxed than the existing results and are applicable to both single-agent and drug combination trials. We illustrate the application of our theoretical results with a number of drug combination dose-finding designs in the literature.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242561</identifier><identifier>PMID: 33253260</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Biology and Life Sciences ; Clinical trials ; Clinical Trials, Phase I as Topic ; Coherence ; Combination drug therapy ; Computer Simulation ; Dose-Response Relationship, Drug ; Drug administration and dosage ; Drug Combinations ; Drug development ; Drug dosages ; Drug Therapy, Combination ; Humans ; Maximum Tolerated Dose ; Medicine and Health Sciences ; Methods ; Neoplasms - drug therapy ; Patients ; Pharmacological research ; Research and analysis methods ; Research Design ; Testing ; Toxicity</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242561</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Park, Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Park, Liu 2020 Park, Liu</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-124541a8bbcf3aeda0aa85ab7445398894d7cf8d446d02a66db120783fadb6e33</citedby><cites>FETCH-LOGICAL-c692t-124541a8bbcf3aeda0aa85ab7445398894d7cf8d446d02a66db120783fadb6e33</cites><orcidid>0000-0001-9645-3407 ; 0000-0003-0126-2646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703981/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703981/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33253260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hutson, Alan D</contributor><creatorcontrib>Park, Yeonhee</creatorcontrib><creatorcontrib>Liu, Suyu</creatorcontrib><title>On the coherence of model-based dose-finding designs for drug combination trials</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The concept of coherence was proposed for single-agent phase I clinical trials to describe the property that a design never escalates the dose when the most recently treated patient has toxicity and never de-escalates the dose when the most recently treated patient has no toxicity. It provides a useful theoretical tool for investigating the properties of phase I trial designs. In this paper, we generalize the concept of coherence to drug combination trials, which are substantially different and more challenging than single-agent trials. For example, in the dose-combination matrix, each dose has up to 8 neighboring doses as candidates for dose escalation and de-escalation, and the toxicity orders of these doses are only partially known. We derive sufficient conditions for a model-based drug combination trial design to be coherent. Our results are more general and relaxed than the existing results and are applicable to both single-agent and drug combination trials. We illustrate the application of our theoretical results with a number of drug combination dose-finding designs in the literature.</description><subject>Algorithms</subject><subject>Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Biology and Life Sciences</subject><subject>Clinical trials</subject><subject>Clinical Trials, Phase I as Topic</subject><subject>Coherence</subject><subject>Combination drug therapy</subject><subject>Computer Simulation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug administration and dosage</subject><subject>Drug Combinations</subject><subject>Drug development</subject><subject>Drug dosages</subject><subject>Drug Therapy, Combination</subject><subject>Humans</subject><subject>Maximum Tolerated Dose</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Neoplasms - drug therapy</subject><subject>Patients</subject><subject>Pharmacological research</subject><subject>Research and analysis methods</subject><subject>Research Design</subject><subject>Testing</subject><subject>Toxicity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLwoIXHfPd9kZYllUHFkb8ug0nH-1kaJsxaUX_vRmnu0xBQXKRcPK8b04Ob5Y9x2iFaYnf7PwUBuhWez_YFSKMcIEfZOe4pqQQBNGHJ-ez7EmMO4Q4rYR4nJ1RSjglAp1nHzdDPm5trv3WBjtom_sm772xXaEgWpMbH23RuMG4oc2Nja4dYt74kJswtUnWKzfA6HyyCQ66-DR71KTNPpv3i-zru5sv1x-K28379fXVbaFFTcYCE8YZhkop3VCwBhBAxUGVjHFaV1XNTKmbyjAmDCIghFGYoLKiDRglLKUX2cuj777zUc7DiJIwwUvCEWWJWB8J42En98H1EH5JD07-KfjQSgij052VVpVE4BpzXCOmcVmB0SXXitoKVQogeb2dX5tUb422wxigW5gubwa3la3_IcsSpe_gZPBqNgj--2Tj-I-WZ6qF1JUbGp_MdO-illeCUYopLw9fX_2FSsvY3ukUh8al-kLweiFIzGh_ji1MMcr150__z26-LdnLE3ZroRu30XfTIQ5xCbIjqIOPMdjmfnIYyUOa76YhD2mWc5qT7MXp1O9Fd_GlvwFE_-8K</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Park, Yeonhee</creator><creator>Liu, Suyu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9645-3407</orcidid><orcidid>https://orcid.org/0000-0003-0126-2646</orcidid></search><sort><creationdate>20201130</creationdate><title>On the coherence of model-based dose-finding designs for drug combination trials</title><author>Park, Yeonhee ; Liu, Suyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-124541a8bbcf3aeda0aa85ab7445398894d7cf8d446d02a66db120783fadb6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Biology and Life Sciences</topic><topic>Clinical trials</topic><topic>Clinical Trials, Phase I as Topic</topic><topic>Coherence</topic><topic>Combination drug therapy</topic><topic>Computer Simulation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug administration and dosage</topic><topic>Drug Combinations</topic><topic>Drug development</topic><topic>Drug dosages</topic><topic>Drug Therapy, Combination</topic><topic>Humans</topic><topic>Maximum Tolerated Dose</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Neoplasms - drug therapy</topic><topic>Patients</topic><topic>Pharmacological research</topic><topic>Research and analysis methods</topic><topic>Research Design</topic><topic>Testing</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Yeonhee</creatorcontrib><creatorcontrib>Liu, Suyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Yeonhee</au><au>Liu, Suyu</au><au>Hutson, Alan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the coherence of model-based dose-finding designs for drug combination trials</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-30</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242561</spage><pages>e0242561-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The concept of coherence was proposed for single-agent phase I clinical trials to describe the property that a design never escalates the dose when the most recently treated patient has toxicity and never de-escalates the dose when the most recently treated patient has no toxicity. It provides a useful theoretical tool for investigating the properties of phase I trial designs. In this paper, we generalize the concept of coherence to drug combination trials, which are substantially different and more challenging than single-agent trials. For example, in the dose-combination matrix, each dose has up to 8 neighboring doses as candidates for dose escalation and de-escalation, and the toxicity orders of these doses are only partially known. We derive sufficient conditions for a model-based drug combination trial design to be coherent. Our results are more general and relaxed than the existing results and are applicable to both single-agent and drug combination trials. We illustrate the application of our theoretical results with a number of drug combination dose-finding designs in the literature.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33253260</pmid><doi>10.1371/journal.pone.0242561</doi><tpages>e0242561</tpages><orcidid>https://orcid.org/0000-0001-9645-3407</orcidid><orcidid>https://orcid.org/0000-0003-0126-2646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-11, Vol.15 (11), p.e0242561
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2465725034
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Antineoplastic Combined Chemotherapy Protocols - administration & dosage
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Biology and Life Sciences
Clinical trials
Clinical Trials, Phase I as Topic
Coherence
Combination drug therapy
Computer Simulation
Dose-Response Relationship, Drug
Drug administration and dosage
Drug Combinations
Drug development
Drug dosages
Drug Therapy, Combination
Humans
Maximum Tolerated Dose
Medicine and Health Sciences
Methods
Neoplasms - drug therapy
Patients
Pharmacological research
Research and analysis methods
Research Design
Testing
Toxicity
title On the coherence of model-based dose-finding designs for drug combination trials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20coherence%20of%20model-based%20dose-finding%20designs%20for%20drug%20combination%20trials&rft.jtitle=PloS%20one&rft.au=Park,%20Yeonhee&rft.date=2020-11-30&rft.volume=15&rft.issue=11&rft.spage=e0242561&rft.pages=e0242561-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242561&rft_dat=%3Cgale_plos_%3EA643313573%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465725034&rft_id=info:pmid/33253260&rft_galeid=A643313573&rft_doaj_id=oai_doaj_org_article_eb72619151904c178adc75cb3e808baa&rfr_iscdi=true