Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils
We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatme...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-11, Vol.15 (11), p.e0242209-e0242209 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0242209 |
---|---|
container_issue | 11 |
container_start_page | e0242209 |
container_title | PloS one |
container_volume | 15 |
creator | Azeem, Muhammad Hale, Lauren Montgomery, Jonathan Crowley, David McGiffen, Jr, Milton E |
description | We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable. |
doi_str_mv | 10.1371/journal.pone.0242209 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2465724580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643313553</galeid><doaj_id>oai_doaj_org_article_a2fa58be05744c1b8e66ce30bfec157d</doaj_id><sourcerecordid>A643313553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a2542314037e054e04a3ab874b27ec9faaa09866d2c74616d280afe67994ee713</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq094I6-LHwMKCX7fhND3tZGmb2SQV_femM91lKnshvUg4fd43OSfnJMlzStaUS_ru2o5ugG69swOuCROMkfJBckpLzlY5I_zh0f4keeL9NSEZL_L8cXLCOcs4LcvTpP9grN6CS2GoU237nfUhxaZBHXxqh9Rb06W90c5WBrqJ6MfBBIN-r4hbZ1scUjPUo8Y6deh3xkEwdoqlYXRN68D7vZF_mjxqoPP4bF7Pkh-fPn6_-LK6vPq8uTi_XOm8ZGEFLBOMU0G4RJIJJAI4VIUUFZOoywYASBkzqZmWIqdxLQg0mMuyFIiS8rPk5cF311mv5kp5xUSeSSaygkRicyBqC9dq50wP7o-yYNQ-YF2rwAWjO1TAGsiKKt5ECqFpVWCea-SkikWimayj1_v5tLHqsdY4BAfdwnT5ZzBb1dpfSkrCS86jwZvZwNmbEX1QvfEauw4GtOP-3jnhGSET-uof9P7sZqqFmIAZGhvP1ZOpOs8F55Rn2eS1voeKX43xxWNbNSbGF4K3C0FkAv4OLYzeq823r__PXv1csq-P2C1CF7beduPURX4JigMY-9F7h81dkSlR01TcVkNNU6HmqYiyF8cPdCe6HQP-FxGjCG4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465724580</pqid></control><display><type>article</type><title>Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Azeem, Muhammad ; Hale, Lauren ; Montgomery, Jonathan ; Crowley, David ; McGiffen, Jr, Milton E</creator><creatorcontrib>Azeem, Muhammad ; Hale, Lauren ; Montgomery, Jonathan ; Crowley, David ; McGiffen, Jr, Milton E</creatorcontrib><description>We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242209</identifier><identifier>PMID: 33253199</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Bacteria - genetics ; Bacteria - isolation & purification ; Biology and Life Sciences ; Biomass ; Carbon ; Carbon sequestration ; Charcoal ; Charcoal - chemistry ; Community structure ; Composition ; Compost ; Composting ; Composting - methods ; Composts ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Earth Sciences ; Ecology and Environmental Sciences ; Environmental aspects ; Environmental science ; Experiments ; Fatty acids ; Fungi ; Fungi - genetics ; Fungi - isolation & purification ; Hydrogen-Ion Concentration ; Loam soils ; Microbial activity ; Microbial colonies ; Microbiological research ; Microbiomes ; Microbiota ; Microorganisms ; Next-generation sequencing ; Nitrogen ; Nitrogen - chemistry ; Phospholipids ; Physical Sciences ; Physiological aspects ; Plant sciences ; Poaceae - growth & development ; Poaceae - metabolism ; Reclamation ; Respiration ; RNA, Ribosomal, 16S - chemistry ; RNA, Ribosomal, 16S - genetics ; RNA, Ribosomal, 16S - metabolism ; rRNA 16S ; Soil - chemistry ; Soil amendment ; Soil fertility ; Soil Microbiology ; Soil microorganisms ; Soil structure ; Soil treatment ; Soils ; Turfgrasses ; Waste treatment</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242209-e0242209</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a2542314037e054e04a3ab874b27ec9faaa09866d2c74616d280afe67994ee713</citedby><cites>FETCH-LOGICAL-c692t-a2542314037e054e04a3ab874b27ec9faaa09866d2c74616d280afe67994ee713</cites><orcidid>0000-0001-9867-0819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703933/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703933/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33253199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azeem, Muhammad</creatorcontrib><creatorcontrib>Hale, Lauren</creatorcontrib><creatorcontrib>Montgomery, Jonathan</creatorcontrib><creatorcontrib>Crowley, David</creatorcontrib><creatorcontrib>McGiffen, Jr, Milton E</creatorcontrib><title>Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon sequestration</subject><subject>Charcoal</subject><subject>Charcoal - chemistry</subject><subject>Community structure</subject><subject>Composition</subject><subject>Compost</subject><subject>Composting</subject><subject>Composting - methods</subject><subject>Composts</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Environmental aspects</subject><subject>Environmental science</subject><subject>Experiments</subject><subject>Fatty acids</subject><subject>Fungi</subject><subject>Fungi - genetics</subject><subject>Fungi - isolation & purification</subject><subject>Hydrogen-Ion Concentration</subject><subject>Loam soils</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiological research</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Next-generation sequencing</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Phospholipids</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plant sciences</subject><subject>Poaceae - growth & development</subject><subject>Poaceae - metabolism</subject><subject>Reclamation</subject><subject>Respiration</subject><subject>RNA, Ribosomal, 16S - chemistry</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>RNA, Ribosomal, 16S - metabolism</subject><subject>rRNA 16S</subject><subject>Soil - chemistry</subject><subject>Soil amendment</subject><subject>Soil fertility</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soil structure</subject><subject>Soil treatment</subject><subject>Soils</subject><subject>Turfgrasses</subject><subject>Waste treatment</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq094I6-LHwMKCX7fhND3tZGmb2SQV_femM91lKnshvUg4fd43OSfnJMlzStaUS_ru2o5ugG69swOuCROMkfJBckpLzlY5I_zh0f4keeL9NSEZL_L8cXLCOcs4LcvTpP9grN6CS2GoU237nfUhxaZBHXxqh9Rb06W90c5WBrqJ6MfBBIN-r4hbZ1scUjPUo8Y6deh3xkEwdoqlYXRN68D7vZF_mjxqoPP4bF7Pkh-fPn6_-LK6vPq8uTi_XOm8ZGEFLBOMU0G4RJIJJAI4VIUUFZOoywYASBkzqZmWIqdxLQg0mMuyFIiS8rPk5cF311mv5kp5xUSeSSaygkRicyBqC9dq50wP7o-yYNQ-YF2rwAWjO1TAGsiKKt5ECqFpVWCea-SkikWimayj1_v5tLHqsdY4BAfdwnT5ZzBb1dpfSkrCS86jwZvZwNmbEX1QvfEauw4GtOP-3jnhGSET-uof9P7sZqqFmIAZGhvP1ZOpOs8F55Rn2eS1voeKX43xxWNbNSbGF4K3C0FkAv4OLYzeq823r__PXv1csq-P2C1CF7beduPURX4JigMY-9F7h81dkSlR01TcVkNNU6HmqYiyF8cPdCe6HQP-FxGjCG4</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Azeem, Muhammad</creator><creator>Hale, Lauren</creator><creator>Montgomery, Jonathan</creator><creator>Crowley, David</creator><creator>McGiffen, Jr, Milton E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9867-0819</orcidid></search><sort><creationdate>20201130</creationdate><title>Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils</title><author>Azeem, Muhammad ; Hale, Lauren ; Montgomery, Jonathan ; Crowley, David ; McGiffen, Jr, Milton E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a2542314037e054e04a3ab874b27ec9faaa09866d2c74616d280afe67994ee713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon sequestration</topic><topic>Charcoal</topic><topic>Charcoal - chemistry</topic><topic>Community structure</topic><topic>Composition</topic><topic>Compost</topic><topic>Composting</topic><topic>Composting - methods</topic><topic>Composts</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Environmental aspects</topic><topic>Environmental science</topic><topic>Experiments</topic><topic>Fatty acids</topic><topic>Fungi</topic><topic>Fungi - genetics</topic><topic>Fungi - isolation & purification</topic><topic>Hydrogen-Ion Concentration</topic><topic>Loam soils</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiological research</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Next-generation sequencing</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Phospholipids</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plant sciences</topic><topic>Poaceae - growth & development</topic><topic>Poaceae - metabolism</topic><topic>Reclamation</topic><topic>Respiration</topic><topic>RNA, Ribosomal, 16S - chemistry</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>RNA, Ribosomal, 16S - metabolism</topic><topic>rRNA 16S</topic><topic>Soil - chemistry</topic><topic>Soil amendment</topic><topic>Soil fertility</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soil structure</topic><topic>Soil treatment</topic><topic>Soils</topic><topic>Turfgrasses</topic><topic>Waste treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azeem, Muhammad</creatorcontrib><creatorcontrib>Hale, Lauren</creatorcontrib><creatorcontrib>Montgomery, Jonathan</creatorcontrib><creatorcontrib>Crowley, David</creatorcontrib><creatorcontrib>McGiffen, Jr, Milton E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azeem, Muhammad</au><au>Hale, Lauren</au><au>Montgomery, Jonathan</au><au>Crowley, David</au><au>McGiffen, Jr, Milton E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-30</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242209</spage><epage>e0242209</epage><pages>e0242209-e0242209</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33253199</pmid><doi>10.1371/journal.pone.0242209</doi><tpages>e0242209</tpages><orcidid>https://orcid.org/0000-0001-9867-0819</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-11, Vol.15 (11), p.e0242209-e0242209 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2465724580 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Bacteria Bacteria - genetics Bacteria - isolation & purification Biology and Life Sciences Biomass Carbon Carbon sequestration Charcoal Charcoal - chemistry Community structure Composition Compost Composting Composting - methods Composts Deoxyribonucleic acid DNA DNA sequencing Earth Sciences Ecology and Environmental Sciences Environmental aspects Environmental science Experiments Fatty acids Fungi Fungi - genetics Fungi - isolation & purification Hydrogen-Ion Concentration Loam soils Microbial activity Microbial colonies Microbiological research Microbiomes Microbiota Microorganisms Next-generation sequencing Nitrogen Nitrogen - chemistry Phospholipids Physical Sciences Physiological aspects Plant sciences Poaceae - growth & development Poaceae - metabolism Reclamation Respiration RNA, Ribosomal, 16S - chemistry RNA, Ribosomal, 16S - genetics RNA, Ribosomal, 16S - metabolism rRNA 16S Soil - chemistry Soil amendment Soil fertility Soil Microbiology Soil microorganisms Soil structure Soil treatment Soils Turfgrasses Waste treatment |
title | Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochar%20and%20compost%20effects%20on%20soil%20microbial%20communities%20and%20nitrogen%20induced%20respiration%20in%20turfgrass%20soils&rft.jtitle=PloS%20one&rft.au=Azeem,%20Muhammad&rft.date=2020-11-30&rft.volume=15&rft.issue=11&rft.spage=e0242209&rft.epage=e0242209&rft.pages=e0242209-e0242209&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242209&rft_dat=%3Cgale_plos_%3EA643313553%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465724580&rft_id=info:pmid/33253199&rft_galeid=A643313553&rft_doaj_id=oai_doaj_org_article_a2fa58be05744c1b8e66ce30bfec157d&rfr_iscdi=true |