Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils

We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-11, Vol.15 (11), p.e0242209-e0242209
Hauptverfasser: Azeem, Muhammad, Hale, Lauren, Montgomery, Jonathan, Crowley, David, McGiffen, Jr, Milton E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0242209
container_issue 11
container_start_page e0242209
container_title PloS one
container_volume 15
creator Azeem, Muhammad
Hale, Lauren
Montgomery, Jonathan
Crowley, David
McGiffen, Jr, Milton E
description We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.
doi_str_mv 10.1371/journal.pone.0242209
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2465724580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643313553</galeid><doaj_id>oai_doaj_org_article_a2fa58be05744c1b8e66ce30bfec157d</doaj_id><sourcerecordid>A643313553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a2542314037e054e04a3ab874b27ec9faaa09866d2c74616d280afe67994ee713</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq094I6-LHwMKCX7fhND3tZGmb2SQV_femM91lKnshvUg4fd43OSfnJMlzStaUS_ru2o5ugG69swOuCROMkfJBckpLzlY5I_zh0f4keeL9NSEZL_L8cXLCOcs4LcvTpP9grN6CS2GoU237nfUhxaZBHXxqh9Rb06W90c5WBrqJ6MfBBIN-r4hbZ1scUjPUo8Y6deh3xkEwdoqlYXRN68D7vZF_mjxqoPP4bF7Pkh-fPn6_-LK6vPq8uTi_XOm8ZGEFLBOMU0G4RJIJJAI4VIUUFZOoywYASBkzqZmWIqdxLQg0mMuyFIiS8rPk5cF311mv5kp5xUSeSSaygkRicyBqC9dq50wP7o-yYNQ-YF2rwAWjO1TAGsiKKt5ECqFpVWCea-SkikWimayj1_v5tLHqsdY4BAfdwnT5ZzBb1dpfSkrCS86jwZvZwNmbEX1QvfEauw4GtOP-3jnhGSET-uof9P7sZqqFmIAZGhvP1ZOpOs8F55Rn2eS1voeKX43xxWNbNSbGF4K3C0FkAv4OLYzeq823r__PXv1csq-P2C1CF7beduPURX4JigMY-9F7h81dkSlR01TcVkNNU6HmqYiyF8cPdCe6HQP-FxGjCG4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465724580</pqid></control><display><type>article</type><title>Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Azeem, Muhammad ; Hale, Lauren ; Montgomery, Jonathan ; Crowley, David ; McGiffen, Jr, Milton E</creator><creatorcontrib>Azeem, Muhammad ; Hale, Lauren ; Montgomery, Jonathan ; Crowley, David ; McGiffen, Jr, Milton E</creatorcontrib><description>We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242209</identifier><identifier>PMID: 33253199</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Biology and Life Sciences ; Biomass ; Carbon ; Carbon sequestration ; Charcoal ; Charcoal - chemistry ; Community structure ; Composition ; Compost ; Composting ; Composting - methods ; Composts ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Earth Sciences ; Ecology and Environmental Sciences ; Environmental aspects ; Environmental science ; Experiments ; Fatty acids ; Fungi ; Fungi - genetics ; Fungi - isolation &amp; purification ; Hydrogen-Ion Concentration ; Loam soils ; Microbial activity ; Microbial colonies ; Microbiological research ; Microbiomes ; Microbiota ; Microorganisms ; Next-generation sequencing ; Nitrogen ; Nitrogen - chemistry ; Phospholipids ; Physical Sciences ; Physiological aspects ; Plant sciences ; Poaceae - growth &amp; development ; Poaceae - metabolism ; Reclamation ; Respiration ; RNA, Ribosomal, 16S - chemistry ; RNA, Ribosomal, 16S - genetics ; RNA, Ribosomal, 16S - metabolism ; rRNA 16S ; Soil - chemistry ; Soil amendment ; Soil fertility ; Soil Microbiology ; Soil microorganisms ; Soil structure ; Soil treatment ; Soils ; Turfgrasses ; Waste treatment</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242209-e0242209</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a2542314037e054e04a3ab874b27ec9faaa09866d2c74616d280afe67994ee713</citedby><cites>FETCH-LOGICAL-c692t-a2542314037e054e04a3ab874b27ec9faaa09866d2c74616d280afe67994ee713</cites><orcidid>0000-0001-9867-0819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703933/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703933/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33253199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azeem, Muhammad</creatorcontrib><creatorcontrib>Hale, Lauren</creatorcontrib><creatorcontrib>Montgomery, Jonathan</creatorcontrib><creatorcontrib>Crowley, David</creatorcontrib><creatorcontrib>McGiffen, Jr, Milton E</creatorcontrib><title>Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon sequestration</subject><subject>Charcoal</subject><subject>Charcoal - chemistry</subject><subject>Community structure</subject><subject>Composition</subject><subject>Compost</subject><subject>Composting</subject><subject>Composting - methods</subject><subject>Composts</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Environmental aspects</subject><subject>Environmental science</subject><subject>Experiments</subject><subject>Fatty acids</subject><subject>Fungi</subject><subject>Fungi - genetics</subject><subject>Fungi - isolation &amp; purification</subject><subject>Hydrogen-Ion Concentration</subject><subject>Loam soils</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiological research</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Next-generation sequencing</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Phospholipids</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plant sciences</subject><subject>Poaceae - growth &amp; development</subject><subject>Poaceae - metabolism</subject><subject>Reclamation</subject><subject>Respiration</subject><subject>RNA, Ribosomal, 16S - chemistry</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>RNA, Ribosomal, 16S - metabolism</subject><subject>rRNA 16S</subject><subject>Soil - chemistry</subject><subject>Soil amendment</subject><subject>Soil fertility</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soil structure</subject><subject>Soil treatment</subject><subject>Soils</subject><subject>Turfgrasses</subject><subject>Waste treatment</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq094I6-LHwMKCX7fhND3tZGmb2SQV_femM91lKnshvUg4fd43OSfnJMlzStaUS_ru2o5ugG69swOuCROMkfJBckpLzlY5I_zh0f4keeL9NSEZL_L8cXLCOcs4LcvTpP9grN6CS2GoU237nfUhxaZBHXxqh9Rb06W90c5WBrqJ6MfBBIN-r4hbZ1scUjPUo8Y6deh3xkEwdoqlYXRN68D7vZF_mjxqoPP4bF7Pkh-fPn6_-LK6vPq8uTi_XOm8ZGEFLBOMU0G4RJIJJAI4VIUUFZOoywYASBkzqZmWIqdxLQg0mMuyFIiS8rPk5cF311mv5kp5xUSeSSaygkRicyBqC9dq50wP7o-yYNQ-YF2rwAWjO1TAGsiKKt5ECqFpVWCea-SkikWimayj1_v5tLHqsdY4BAfdwnT5ZzBb1dpfSkrCS86jwZvZwNmbEX1QvfEauw4GtOP-3jnhGSET-uof9P7sZqqFmIAZGhvP1ZOpOs8F55Rn2eS1voeKX43xxWNbNSbGF4K3C0FkAv4OLYzeq823r__PXv1csq-P2C1CF7beduPURX4JigMY-9F7h81dkSlR01TcVkNNU6HmqYiyF8cPdCe6HQP-FxGjCG4</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Azeem, Muhammad</creator><creator>Hale, Lauren</creator><creator>Montgomery, Jonathan</creator><creator>Crowley, David</creator><creator>McGiffen, Jr, Milton E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9867-0819</orcidid></search><sort><creationdate>20201130</creationdate><title>Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils</title><author>Azeem, Muhammad ; Hale, Lauren ; Montgomery, Jonathan ; Crowley, David ; McGiffen, Jr, Milton E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a2542314037e054e04a3ab874b27ec9faaa09866d2c74616d280afe67994ee713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon sequestration</topic><topic>Charcoal</topic><topic>Charcoal - chemistry</topic><topic>Community structure</topic><topic>Composition</topic><topic>Compost</topic><topic>Composting</topic><topic>Composting - methods</topic><topic>Composts</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Environmental aspects</topic><topic>Environmental science</topic><topic>Experiments</topic><topic>Fatty acids</topic><topic>Fungi</topic><topic>Fungi - genetics</topic><topic>Fungi - isolation &amp; purification</topic><topic>Hydrogen-Ion Concentration</topic><topic>Loam soils</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiological research</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Next-generation sequencing</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Phospholipids</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plant sciences</topic><topic>Poaceae - growth &amp; development</topic><topic>Poaceae - metabolism</topic><topic>Reclamation</topic><topic>Respiration</topic><topic>RNA, Ribosomal, 16S - chemistry</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>RNA, Ribosomal, 16S - metabolism</topic><topic>rRNA 16S</topic><topic>Soil - chemistry</topic><topic>Soil amendment</topic><topic>Soil fertility</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soil structure</topic><topic>Soil treatment</topic><topic>Soils</topic><topic>Turfgrasses</topic><topic>Waste treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azeem, Muhammad</creatorcontrib><creatorcontrib>Hale, Lauren</creatorcontrib><creatorcontrib>Montgomery, Jonathan</creatorcontrib><creatorcontrib>Crowley, David</creatorcontrib><creatorcontrib>McGiffen, Jr, Milton E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azeem, Muhammad</au><au>Hale, Lauren</au><au>Montgomery, Jonathan</au><au>Crowley, David</au><au>McGiffen, Jr, Milton E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-30</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242209</spage><epage>e0242209</epage><pages>e0242209-e0242209</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33253199</pmid><doi>10.1371/journal.pone.0242209</doi><tpages>e0242209</tpages><orcidid>https://orcid.org/0000-0001-9867-0819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-11, Vol.15 (11), p.e0242209-e0242209
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2465724580
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Bacteria
Bacteria - genetics
Bacteria - isolation & purification
Biology and Life Sciences
Biomass
Carbon
Carbon sequestration
Charcoal
Charcoal - chemistry
Community structure
Composition
Compost
Composting
Composting - methods
Composts
Deoxyribonucleic acid
DNA
DNA sequencing
Earth Sciences
Ecology and Environmental Sciences
Environmental aspects
Environmental science
Experiments
Fatty acids
Fungi
Fungi - genetics
Fungi - isolation & purification
Hydrogen-Ion Concentration
Loam soils
Microbial activity
Microbial colonies
Microbiological research
Microbiomes
Microbiota
Microorganisms
Next-generation sequencing
Nitrogen
Nitrogen - chemistry
Phospholipids
Physical Sciences
Physiological aspects
Plant sciences
Poaceae - growth & development
Poaceae - metabolism
Reclamation
Respiration
RNA, Ribosomal, 16S - chemistry
RNA, Ribosomal, 16S - genetics
RNA, Ribosomal, 16S - metabolism
rRNA 16S
Soil - chemistry
Soil amendment
Soil fertility
Soil Microbiology
Soil microorganisms
Soil structure
Soil treatment
Soils
Turfgrasses
Waste treatment
title Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochar%20and%20compost%20effects%20on%20soil%20microbial%20communities%20and%20nitrogen%20induced%20respiration%20in%20turfgrass%20soils&rft.jtitle=PloS%20one&rft.au=Azeem,%20Muhammad&rft.date=2020-11-30&rft.volume=15&rft.issue=11&rft.spage=e0242209&rft.epage=e0242209&rft.pages=e0242209-e0242209&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242209&rft_dat=%3Cgale_plos_%3EA643313553%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465724580&rft_id=info:pmid/33253199&rft_galeid=A643313553&rft_doaj_id=oai_doaj_org_article_a2fa58be05744c1b8e66ce30bfec157d&rfr_iscdi=true