A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins

Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-11, Vol.15 (11), p.e0242723-e0242723
Hauptverfasser: Makrodimitris, Stavros, Reinders, Marcel, van Ham, Roeland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0242723
container_issue 11
container_start_page e0242723
container_title PloS one
container_volume 15
creator Makrodimitris, Stavros
Reinders, Marcel
van Ham, Roeland
description Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-model species. Here, we tested to what extent these incomplete networks are still useful for genome-wide function prediction. We used two network-based classifiers to predict Biological Process Gene Ontology terms from protein interaction data in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Solanum lycopersicum (tomato). The classifiers had reasonable performance in the well-studied yeast, but performed poorly in the other species. We showed that this poor performance can be considerably improved by adding edges predicted from various data sources, such as text mining, and that associations from the STRING database are more useful than interactions predicted by a neural network from sequence-based features.
doi_str_mv 10.1371/journal.pone.0242723
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2464362175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642812193</galeid><doaj_id>oai_doaj_org_article_4fb0d235887d4ff5920e4833a2ea07f8</doaj_id><sourcerecordid>A642812193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f74508ef69d09753c70b51955e2ca29068b124ec5d11b7be5e01d4aede1c26093</originalsourceid><addsrcrecordid>eNqNU9tq3DAQNaWlSbf9g9IaCqWF7lY3y_ZLIYReAoFAb69Clka7Cl5pI8kh-Zt-auVdb8iWPBQ_aDQ654x0PFMULzFaYFrjj5d-CE72i413sECEkZrQR8UxbimZc4Lo43vxUfEsxkuEKtpw_rQ4opTQuuXsuPhzUqaVD35YrkqZ5W6jjaU3OQml8i4F2w3Jejfm4GYDwa7BJdl_KHWOr0Fnli4jXA3gFMw7GXNqE0BblbaRT2DdfFpL6xIEqUbFWBofSjO47U72Wcj5JPfFJkZ8Xjwxso_wYlpnxa8vn3-efpufX3w9Oz05nyvekjQ3NatQA4a3GrV1RVWNugq3VQVESdIi3nSYMFCVxrirO6gAYc0kaMCKcNTSWfF6p7vpfRSTuVEQxhnlBGfJWXG2Q2gvL8UmOyHDrfDSim3Ch6WQIVnVg2CmQ5rQqmlqzYypWoKANZRKAhLVpslan6ZqQ7cGrbKnQfYHoocnzq7E0l-LmjcNblAWeDcJBJ-9j0msbVTQ99KBH3b35ojXhGXom3-gD79uQi1lfoB1xue6ahQVJ5yRBpPcTRm1eACVPw1rm_sFjM35A8L7A8LYU3CTlnKIUZz9-P7_2Ivfh9i397ArkH1aRd9vezUeAtkOqIKPMYC5MxkjMQ7S3g0xDpKYBinTXt3_QXek_eTQv9-NHAs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464362175</pqid></control><display><type>article</type><title>A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins</title><source>MEDLINE</source><source>PLoS_OA刊</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Makrodimitris, Stavros ; Reinders, Marcel ; van Ham, Roeland</creator><contributor>Oliva, Baldo</contributor><creatorcontrib>Makrodimitris, Stavros ; Reinders, Marcel ; van Ham, Roeland ; Oliva, Baldo</creatorcontrib><description>Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-model species. Here, we tested to what extent these incomplete networks are still useful for genome-wide function prediction. We used two network-based classifiers to predict Biological Process Gene Ontology terms from protein interaction data in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Solanum lycopersicum (tomato). The classifiers had reasonable performance in the well-studied yeast, but performed poorly in the other species. We showed that this poor performance can be considerably improved by adding edges predicted from various data sources, such as text mining, and that associations from the STRING database are more useful than interactions predicted by a neural network from sequence-based features.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242723</identifier><identifier>PMID: 33237964</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acid sequence ; Annotations ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Artificial neural networks ; Associations ; Bioinformatics ; Biological activity ; Biology and Life Sciences ; Cellular communication ; Classifiers ; Computer and Information Sciences ; Data mining ; Deep learning ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Experiments ; Flowers &amp; plants ; Genes ; Genomes ; Genomics ; Methods ; Molecular Sequence Annotation ; Neural networks ; Ontology ; Protein interaction ; Protein Interaction Maps - physiology ; Protein-protein interactions ; Proteins ; Research and Analysis Methods ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Solanum lycopersicum ; Solanum lycopersicum - genetics ; Solanum lycopersicum - metabolism ; Species ; Tomatoes ; Yeasts</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242723-e0242723</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Makrodimitris et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Makrodimitris et al 2020 Makrodimitris et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f74508ef69d09753c70b51955e2ca29068b124ec5d11b7be5e01d4aede1c26093</citedby><cites>FETCH-LOGICAL-c692t-f74508ef69d09753c70b51955e2ca29068b124ec5d11b7be5e01d4aede1c26093</cites><orcidid>0000-0002-3111-4268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33237964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Oliva, Baldo</contributor><creatorcontrib>Makrodimitris, Stavros</creatorcontrib><creatorcontrib>Reinders, Marcel</creatorcontrib><creatorcontrib>van Ham, Roeland</creatorcontrib><title>A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-model species. Here, we tested to what extent these incomplete networks are still useful for genome-wide function prediction. We used two network-based classifiers to predict Biological Process Gene Ontology terms from protein interaction data in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Solanum lycopersicum (tomato). The classifiers had reasonable performance in the well-studied yeast, but performed poorly in the other species. We showed that this poor performance can be considerably improved by adding edges predicted from various data sources, such as text mining, and that associations from the STRING database are more useful than interactions predicted by a neural network from sequence-based features.</description><subject>Amino acid sequence</subject><subject>Annotations</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Artificial neural networks</subject><subject>Associations</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biology and Life Sciences</subject><subject>Cellular communication</subject><subject>Classifiers</subject><subject>Computer and Information Sciences</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Experiments</subject><subject>Flowers &amp; plants</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Methods</subject><subject>Molecular Sequence Annotation</subject><subject>Neural networks</subject><subject>Ontology</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps - physiology</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Solanum lycopersicum</subject><subject>Solanum lycopersicum - genetics</subject><subject>Solanum lycopersicum - metabolism</subject><subject>Species</subject><subject>Tomatoes</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNU9tq3DAQNaWlSbf9g9IaCqWF7lY3y_ZLIYReAoFAb69Clka7Cl5pI8kh-Zt-auVdb8iWPBQ_aDQ654x0PFMULzFaYFrjj5d-CE72i413sECEkZrQR8UxbimZc4Lo43vxUfEsxkuEKtpw_rQ4opTQuuXsuPhzUqaVD35YrkqZ5W6jjaU3OQml8i4F2w3Jejfm4GYDwa7BJdl_KHWOr0Fnli4jXA3gFMw7GXNqE0BblbaRT2DdfFpL6xIEqUbFWBofSjO47U72Wcj5JPfFJkZ8Xjwxso_wYlpnxa8vn3-efpufX3w9Oz05nyvekjQ3NatQA4a3GrV1RVWNugq3VQVESdIi3nSYMFCVxrirO6gAYc0kaMCKcNTSWfF6p7vpfRSTuVEQxhnlBGfJWXG2Q2gvL8UmOyHDrfDSim3Ch6WQIVnVg2CmQ5rQqmlqzYypWoKANZRKAhLVpslan6ZqQ7cGrbKnQfYHoocnzq7E0l-LmjcNblAWeDcJBJ-9j0msbVTQ99KBH3b35ojXhGXom3-gD79uQi1lfoB1xue6ahQVJ5yRBpPcTRm1eACVPw1rm_sFjM35A8L7A8LYU3CTlnKIUZz9-P7_2Ivfh9i397ArkH1aRd9vezUeAtkOqIKPMYC5MxkjMQ7S3g0xDpKYBinTXt3_QXek_eTQv9-NHAs</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Makrodimitris, Stavros</creator><creator>Reinders, Marcel</creator><creator>van Ham, Roeland</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3111-4268</orcidid></search><sort><creationdate>20201125</creationdate><title>A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins</title><author>Makrodimitris, Stavros ; Reinders, Marcel ; van Ham, Roeland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f74508ef69d09753c70b51955e2ca29068b124ec5d11b7be5e01d4aede1c26093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acid sequence</topic><topic>Annotations</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Artificial neural networks</topic><topic>Associations</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biology and Life Sciences</topic><topic>Cellular communication</topic><topic>Classifiers</topic><topic>Computer and Information Sciences</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Experiments</topic><topic>Flowers &amp; plants</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Methods</topic><topic>Molecular Sequence Annotation</topic><topic>Neural networks</topic><topic>Ontology</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps - physiology</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Solanum lycopersicum</topic><topic>Solanum lycopersicum - genetics</topic><topic>Solanum lycopersicum - metabolism</topic><topic>Species</topic><topic>Tomatoes</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makrodimitris, Stavros</creatorcontrib><creatorcontrib>Reinders, Marcel</creatorcontrib><creatorcontrib>van Ham, Roeland</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makrodimitris, Stavros</au><au>Reinders, Marcel</au><au>van Ham, Roeland</au><au>Oliva, Baldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242723</spage><epage>e0242723</epage><pages>e0242723-e0242723</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-model species. Here, we tested to what extent these incomplete networks are still useful for genome-wide function prediction. We used two network-based classifiers to predict Biological Process Gene Ontology terms from protein interaction data in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Solanum lycopersicum (tomato). The classifiers had reasonable performance in the well-studied yeast, but performed poorly in the other species. We showed that this poor performance can be considerably improved by adding edges predicted from various data sources, such as text mining, and that associations from the STRING database are more useful than interactions predicted by a neural network from sequence-based features.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33237964</pmid><doi>10.1371/journal.pone.0242723</doi><tpages>e0242723</tpages><orcidid>https://orcid.org/0000-0002-3111-4268</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-11, Vol.15 (11), p.e0242723-e0242723
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2464362175
source MEDLINE; PLoS_OA刊; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino acid sequence
Annotations
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Artificial neural networks
Associations
Bioinformatics
Biological activity
Biology and Life Sciences
Cellular communication
Classifiers
Computer and Information Sciences
Data mining
Deep learning
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Experiments
Flowers & plants
Genes
Genomes
Genomics
Methods
Molecular Sequence Annotation
Neural networks
Ontology
Protein interaction
Protein Interaction Maps - physiology
Protein-protein interactions
Proteins
Research and Analysis Methods
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Solanum lycopersicum
Solanum lycopersicum - genetics
Solanum lycopersicum - metabolism
Species
Tomatoes
Yeasts
title A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thorough%20analysis%20of%20the%20contribution%20of%20experimental,%20derived%20and%20sequence-based%20predicted%20protein-protein%20interactions%20for%20functional%20annotation%20of%20proteins&rft.jtitle=PloS%20one&rft.au=Makrodimitris,%20Stavros&rft.date=2020-11-25&rft.volume=15&rft.issue=11&rft.spage=e0242723&rft.epage=e0242723&rft.pages=e0242723-e0242723&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242723&rft_dat=%3Cgale_plos_%3EA642812193%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464362175&rft_id=info:pmid/33237964&rft_galeid=A642812193&rft_doaj_id=oai_doaj_org_article_4fb0d235887d4ff5920e4833a2ea07f8&rfr_iscdi=true