A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins
Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for n...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-11, Vol.15 (11), p.e0242723-e0242723 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0242723 |
---|---|
container_issue | 11 |
container_start_page | e0242723 |
container_title | PloS one |
container_volume | 15 |
creator | Makrodimitris, Stavros Reinders, Marcel van Ham, Roeland |
description | Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-model species. Here, we tested to what extent these incomplete networks are still useful for genome-wide function prediction. We used two network-based classifiers to predict Biological Process Gene Ontology terms from protein interaction data in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Solanum lycopersicum (tomato). The classifiers had reasonable performance in the well-studied yeast, but performed poorly in the other species. We showed that this poor performance can be considerably improved by adding edges predicted from various data sources, such as text mining, and that associations from the STRING database are more useful than interactions predicted by a neural network from sequence-based features. |
doi_str_mv | 10.1371/journal.pone.0242723 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2464362175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642812193</galeid><doaj_id>oai_doaj_org_article_4fb0d235887d4ff5920e4833a2ea07f8</doaj_id><sourcerecordid>A642812193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f74508ef69d09753c70b51955e2ca29068b124ec5d11b7be5e01d4aede1c26093</originalsourceid><addsrcrecordid>eNqNU9tq3DAQNaWlSbf9g9IaCqWF7lY3y_ZLIYReAoFAb69Clka7Cl5pI8kh-Zt-auVdb8iWPBQ_aDQ654x0PFMULzFaYFrjj5d-CE72i413sECEkZrQR8UxbimZc4Lo43vxUfEsxkuEKtpw_rQ4opTQuuXsuPhzUqaVD35YrkqZ5W6jjaU3OQml8i4F2w3Jejfm4GYDwa7BJdl_KHWOr0Fnli4jXA3gFMw7GXNqE0BblbaRT2DdfFpL6xIEqUbFWBofSjO47U72Wcj5JPfFJkZ8Xjwxso_wYlpnxa8vn3-efpufX3w9Oz05nyvekjQ3NatQA4a3GrV1RVWNugq3VQVESdIi3nSYMFCVxrirO6gAYc0kaMCKcNTSWfF6p7vpfRSTuVEQxhnlBGfJWXG2Q2gvL8UmOyHDrfDSim3Ch6WQIVnVg2CmQ5rQqmlqzYypWoKANZRKAhLVpslan6ZqQ7cGrbKnQfYHoocnzq7E0l-LmjcNblAWeDcJBJ-9j0msbVTQ99KBH3b35ojXhGXom3-gD79uQi1lfoB1xue6ahQVJ5yRBpPcTRm1eACVPw1rm_sFjM35A8L7A8LYU3CTlnKIUZz9-P7_2Ivfh9i397ArkH1aRd9vezUeAtkOqIKPMYC5MxkjMQ7S3g0xDpKYBinTXt3_QXek_eTQv9-NHAs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464362175</pqid></control><display><type>article</type><title>A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins</title><source>MEDLINE</source><source>PLoS_OA刊</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Makrodimitris, Stavros ; Reinders, Marcel ; van Ham, Roeland</creator><contributor>Oliva, Baldo</contributor><creatorcontrib>Makrodimitris, Stavros ; Reinders, Marcel ; van Ham, Roeland ; Oliva, Baldo</creatorcontrib><description>Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-model species. Here, we tested to what extent these incomplete networks are still useful for genome-wide function prediction. We used two network-based classifiers to predict Biological Process Gene Ontology terms from protein interaction data in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Solanum lycopersicum (tomato). The classifiers had reasonable performance in the well-studied yeast, but performed poorly in the other species. We showed that this poor performance can be considerably improved by adding edges predicted from various data sources, such as text mining, and that associations from the STRING database are more useful than interactions predicted by a neural network from sequence-based features.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242723</identifier><identifier>PMID: 33237964</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acid sequence ; Annotations ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Artificial neural networks ; Associations ; Bioinformatics ; Biological activity ; Biology and Life Sciences ; Cellular communication ; Classifiers ; Computer and Information Sciences ; Data mining ; Deep learning ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Experiments ; Flowers & plants ; Genes ; Genomes ; Genomics ; Methods ; Molecular Sequence Annotation ; Neural networks ; Ontology ; Protein interaction ; Protein Interaction Maps - physiology ; Protein-protein interactions ; Proteins ; Research and Analysis Methods ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Solanum lycopersicum ; Solanum lycopersicum - genetics ; Solanum lycopersicum - metabolism ; Species ; Tomatoes ; Yeasts</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242723-e0242723</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Makrodimitris et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Makrodimitris et al 2020 Makrodimitris et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f74508ef69d09753c70b51955e2ca29068b124ec5d11b7be5e01d4aede1c26093</citedby><cites>FETCH-LOGICAL-c692t-f74508ef69d09753c70b51955e2ca29068b124ec5d11b7be5e01d4aede1c26093</cites><orcidid>0000-0002-3111-4268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33237964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Oliva, Baldo</contributor><creatorcontrib>Makrodimitris, Stavros</creatorcontrib><creatorcontrib>Reinders, Marcel</creatorcontrib><creatorcontrib>van Ham, Roeland</creatorcontrib><title>A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-model species. Here, we tested to what extent these incomplete networks are still useful for genome-wide function prediction. We used two network-based classifiers to predict Biological Process Gene Ontology terms from protein interaction data in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Solanum lycopersicum (tomato). The classifiers had reasonable performance in the well-studied yeast, but performed poorly in the other species. We showed that this poor performance can be considerably improved by adding edges predicted from various data sources, such as text mining, and that associations from the STRING database are more useful than interactions predicted by a neural network from sequence-based features.</description><subject>Amino acid sequence</subject><subject>Annotations</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Artificial neural networks</subject><subject>Associations</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biology and Life Sciences</subject><subject>Cellular communication</subject><subject>Classifiers</subject><subject>Computer and Information Sciences</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Experiments</subject><subject>Flowers & plants</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Methods</subject><subject>Molecular Sequence Annotation</subject><subject>Neural networks</subject><subject>Ontology</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps - physiology</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Solanum lycopersicum</subject><subject>Solanum lycopersicum - genetics</subject><subject>Solanum lycopersicum - metabolism</subject><subject>Species</subject><subject>Tomatoes</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNU9tq3DAQNaWlSbf9g9IaCqWF7lY3y_ZLIYReAoFAb69Clka7Cl5pI8kh-Zt-auVdb8iWPBQ_aDQ654x0PFMULzFaYFrjj5d-CE72i413sECEkZrQR8UxbimZc4Lo43vxUfEsxkuEKtpw_rQ4opTQuuXsuPhzUqaVD35YrkqZ5W6jjaU3OQml8i4F2w3Jejfm4GYDwa7BJdl_KHWOr0Fnli4jXA3gFMw7GXNqE0BblbaRT2DdfFpL6xIEqUbFWBofSjO47U72Wcj5JPfFJkZ8Xjwxso_wYlpnxa8vn3-efpufX3w9Oz05nyvekjQ3NatQA4a3GrV1RVWNugq3VQVESdIi3nSYMFCVxrirO6gAYc0kaMCKcNTSWfF6p7vpfRSTuVEQxhnlBGfJWXG2Q2gvL8UmOyHDrfDSim3Ch6WQIVnVg2CmQ5rQqmlqzYypWoKANZRKAhLVpslan6ZqQ7cGrbKnQfYHoocnzq7E0l-LmjcNblAWeDcJBJ-9j0msbVTQ99KBH3b35ojXhGXom3-gD79uQi1lfoB1xue6ahQVJ5yRBpPcTRm1eACVPw1rm_sFjM35A8L7A8LYU3CTlnKIUZz9-P7_2Ivfh9i397ArkH1aRd9vezUeAtkOqIKPMYC5MxkjMQ7S3g0xDpKYBinTXt3_QXek_eTQv9-NHAs</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Makrodimitris, Stavros</creator><creator>Reinders, Marcel</creator><creator>van Ham, Roeland</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3111-4268</orcidid></search><sort><creationdate>20201125</creationdate><title>A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins</title><author>Makrodimitris, Stavros ; Reinders, Marcel ; van Ham, Roeland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f74508ef69d09753c70b51955e2ca29068b124ec5d11b7be5e01d4aede1c26093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acid sequence</topic><topic>Annotations</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Artificial neural networks</topic><topic>Associations</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biology and Life Sciences</topic><topic>Cellular communication</topic><topic>Classifiers</topic><topic>Computer and Information Sciences</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Experiments</topic><topic>Flowers & plants</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Methods</topic><topic>Molecular Sequence Annotation</topic><topic>Neural networks</topic><topic>Ontology</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps - physiology</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Solanum lycopersicum</topic><topic>Solanum lycopersicum - genetics</topic><topic>Solanum lycopersicum - metabolism</topic><topic>Species</topic><topic>Tomatoes</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makrodimitris, Stavros</creatorcontrib><creatorcontrib>Reinders, Marcel</creatorcontrib><creatorcontrib>van Ham, Roeland</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makrodimitris, Stavros</au><au>Reinders, Marcel</au><au>van Ham, Roeland</au><au>Oliva, Baldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242723</spage><epage>e0242723</epage><pages>e0242723-e0242723</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-model species. Here, we tested to what extent these incomplete networks are still useful for genome-wide function prediction. We used two network-based classifiers to predict Biological Process Gene Ontology terms from protein interaction data in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Solanum lycopersicum (tomato). The classifiers had reasonable performance in the well-studied yeast, but performed poorly in the other species. We showed that this poor performance can be considerably improved by adding edges predicted from various data sources, such as text mining, and that associations from the STRING database are more useful than interactions predicted by a neural network from sequence-based features.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33237964</pmid><doi>10.1371/journal.pone.0242723</doi><tpages>e0242723</tpages><orcidid>https://orcid.org/0000-0002-3111-4268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-11, Vol.15 (11), p.e0242723-e0242723 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2464362175 |
source | MEDLINE; PLoS_OA刊; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino acid sequence Annotations Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Artificial neural networks Associations Bioinformatics Biological activity Biology and Life Sciences Cellular communication Classifiers Computer and Information Sciences Data mining Deep learning E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Experiments Flowers & plants Genes Genomes Genomics Methods Molecular Sequence Annotation Neural networks Ontology Protein interaction Protein Interaction Maps - physiology Protein-protein interactions Proteins Research and Analysis Methods Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Solanum lycopersicum Solanum lycopersicum - genetics Solanum lycopersicum - metabolism Species Tomatoes Yeasts |
title | A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thorough%20analysis%20of%20the%20contribution%20of%20experimental,%20derived%20and%20sequence-based%20predicted%20protein-protein%20interactions%20for%20functional%20annotation%20of%20proteins&rft.jtitle=PloS%20one&rft.au=Makrodimitris,%20Stavros&rft.date=2020-11-25&rft.volume=15&rft.issue=11&rft.spage=e0242723&rft.epage=e0242723&rft.pages=e0242723-e0242723&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242723&rft_dat=%3Cgale_plos_%3EA642812193%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464362175&rft_id=info:pmid/33237964&rft_galeid=A642812193&rft_doaj_id=oai_doaj_org_article_4fb0d235887d4ff5920e4833a2ea07f8&rfr_iscdi=true |