Characterization of binding between model protein GA-Z and human serum albumin using asymmetrical flow field-flow fractionation and small angle X-ray scattering
Protein-based drugs often require targeted drug delivery for optimal therapy. A successful strategy to increase the circulation time of the protein in the blood is to link the therapeutic protein with an albumin-binding domain. In this work, we characterized such a protein-based drug, GA-Z. Using as...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-11, Vol.15 (11), p.e0242605 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e0242605 |
container_title | PloS one |
container_volume | 15 |
creator | Choi, Jaeyeong Wahlgren, Marie Ek, Vilhelm Elofsson, Ulla Fransson, Jonas Nilsson, Lars Terry, Ann Söderberg, Christopher A G |
description | Protein-based drugs often require targeted drug delivery for optimal therapy. A successful strategy to increase the circulation time of the protein in the blood is to link the therapeutic protein with an albumin-binding domain. In this work, we characterized such a protein-based drug, GA-Z. Using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering (AF4-MALS) we investigated the GA-Z monomer-dimer equilibrium as well as the molar binding ratio of GA-Z to HSA. Using small angle X-ray scattering, we studied the structure of GA-Z as well as the complex between GA-Z and HSA. The results show that GA-Z is predominantly dimeric in solution at pH 7 and that it binds to monomeric as well as dimeric HSA. Furthermore, GA-Z binds to HSA both as a monomer and a dimer, and thus, it can be expected to stay bound also upon dilution following injection in the blood stream. The results from SAXS and binding studies indicate that the GA-Z dimer is formed between two target domains (Z-domains). The results also indicate that the binding of GA-Z to HSA does not affect the ratio between HSA dimers and monomers, and that no higher order oligomers of the complex are seen other than those containing dimers of GA-Z and dimers of HSA. |
doi_str_mv | 10.1371/journal.pone.0242605 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2464157507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642711536</galeid><doaj_id>oai_doaj_org_article_a1937eb382f24beea50a687c2acd3d1f</doaj_id><sourcerecordid>A642711536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c797t-c9d7427dd54352300c7f2c29c9103b2f2dc8618b98a397bedea76b1e86a7bd4d3</originalsourceid><addsrcrecordid>eNqNk29r1TAUxosobk6_gWhBEEXuTJqkad8Il6lzMBj4Z4hvwmlyem9G2lyT1jk_jR_VdPdu7MoECaGH5HeekzzpybLHlOxTJunrMz-GHtz-yve4TwpelETcyXZpzYpZWRB290a8kz2I8YwQwaqyvJ_tMFakIclu9vtgCQH0gMH-gsH6Pvdt3tje2H6RNzicI_Z55w26fBX8gLbPD-ezbzn0Jl-OHfR5xDB2Obhm7NLmGKdEiBddh0OwGlzeOn-etxadma3DqV6qtC43CcUOnEvRwmH-dRbgIo8ahulM_eJhdq8FF_HR5ruXfXn_7vPBh9nxyeHRwfx4pmUth5mujeSFNEZwJgpGiJZtoYta15SwpmgLo6uSVk1dAatlgwZBlg3FqgTZGG7YXvZ0rbtyPqqNuVEVvORUSEFkIo7WhPFwplbBdhAulAerLhd8WCgIg9UOFSTnJTasSoV5gwiCQFlJXYA2zNA2aR2vteI5rsZmS82NqzSbNFVERQSh0rSlYpxwxSVUCnQtFOWaaSom6SrJvfqn3Ft7Or88XLBKkJqLRL_ZXHVsOjQa-yGA20ra3untUi38DyXLSnDJk8CLjUDw30eMg-ps1Ogc9OjHjWlVRUSd0Gd_obdbu6EWkNyzfetTXT2JqnmZnpVSwcpE7d9CpWGwszq1QWvT-lbCy62ExAz4c1jAGKM6-vTx_9mT0232-Q12ieCGZfRunH7ouA3yNaiDjzFge20yJWrq4is31NTFatPFKe3JzQe6TrpqW_YHeU1Eog</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464157507</pqid></control><display><type>article</type><title>Characterization of binding between model protein GA-Z and human serum albumin using asymmetrical flow field-flow fractionation and small angle X-ray scattering</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Choi, Jaeyeong ; Wahlgren, Marie ; Ek, Vilhelm ; Elofsson, Ulla ; Fransson, Jonas ; Nilsson, Lars ; Terry, Ann ; Söderberg, Christopher A G</creator><contributor>Subramanyam, Rajagopal</contributor><creatorcontrib>Choi, Jaeyeong ; Wahlgren, Marie ; Ek, Vilhelm ; Elofsson, Ulla ; Fransson, Jonas ; Nilsson, Lars ; Terry, Ann ; Söderberg, Christopher A G ; Subramanyam, Rajagopal</creatorcontrib><description>Protein-based drugs often require targeted drug delivery for optimal therapy. A successful strategy to increase the circulation time of the protein in the blood is to link the therapeutic protein with an albumin-binding domain. In this work, we characterized such a protein-based drug, GA-Z. Using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering (AF4-MALS) we investigated the GA-Z monomer-dimer equilibrium as well as the molar binding ratio of GA-Z to HSA. Using small angle X-ray scattering, we studied the structure of GA-Z as well as the complex between GA-Z and HSA. The results show that GA-Z is predominantly dimeric in solution at pH 7 and that it binds to monomeric as well as dimeric HSA. Furthermore, GA-Z binds to HSA both as a monomer and a dimer, and thus, it can be expected to stay bound also upon dilution following injection in the blood stream. The results from SAXS and binding studies indicate that the GA-Z dimer is formed between two target domains (Z-domains). The results also indicate that the binding of GA-Z to HSA does not affect the ratio between HSA dimers and monomers, and that no higher order oligomers of the complex are seen other than those containing dimers of GA-Z and dimers of HSA.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242605</identifier><identifier>PMID: 33232370</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Albumin ; Analysis ; Asymmetry ; Binding ; Binding sites ; Biological products ; Biology and Life Sciences ; Blood ; Blood circulation ; Chemistry Techniques, Analytical - methods ; Chromatography ; Chromatography, Gel ; Crystal structure ; Crystallography ; Dilution ; Dimerization ; Dimers ; Drug delivery ; Drug delivery systems ; Drug dosages ; Earth Sciences ; Engineering ; Engineering and Technology ; Fatty acids ; Food science ; Fractionation ; Human serum albumin ; Humans ; Industrial Biotechnology ; Industriell bioteknik ; Light scattering ; Models, Molecular ; Molecular Weight ; Monomers ; Nutrition ; Oligomers ; Peptides ; Physical Sciences ; Protein Binding ; Protein Conformation ; Protein separation ; Proteins ; Recombinant Fusion Proteins - metabolism ; Research and Analysis Methods ; Scattering, Small Angle ; Serum albumin ; Serum Albumin, Human - metabolism ; Small angle X ray scattering ; Teknik ; X-ray scattering</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242605</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Choi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Choi et al 2020 Choi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c797t-c9d7427dd54352300c7f2c29c9103b2f2dc8618b98a397bedea76b1e86a7bd4d3</citedby><cites>FETCH-LOGICAL-c797t-c9d7427dd54352300c7f2c29c9103b2f2dc8618b98a397bedea76b1e86a7bd4d3</cites><orcidid>0000-0002-0850-2676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685474/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685474/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33232370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-50945$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/05017df6-3404-47a8-ac95-14c3c15ea508$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Subramanyam, Rajagopal</contributor><creatorcontrib>Choi, Jaeyeong</creatorcontrib><creatorcontrib>Wahlgren, Marie</creatorcontrib><creatorcontrib>Ek, Vilhelm</creatorcontrib><creatorcontrib>Elofsson, Ulla</creatorcontrib><creatorcontrib>Fransson, Jonas</creatorcontrib><creatorcontrib>Nilsson, Lars</creatorcontrib><creatorcontrib>Terry, Ann</creatorcontrib><creatorcontrib>Söderberg, Christopher A G</creatorcontrib><title>Characterization of binding between model protein GA-Z and human serum albumin using asymmetrical flow field-flow fractionation and small angle X-ray scattering</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Protein-based drugs often require targeted drug delivery for optimal therapy. A successful strategy to increase the circulation time of the protein in the blood is to link the therapeutic protein with an albumin-binding domain. In this work, we characterized such a protein-based drug, GA-Z. Using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering (AF4-MALS) we investigated the GA-Z monomer-dimer equilibrium as well as the molar binding ratio of GA-Z to HSA. Using small angle X-ray scattering, we studied the structure of GA-Z as well as the complex between GA-Z and HSA. The results show that GA-Z is predominantly dimeric in solution at pH 7 and that it binds to monomeric as well as dimeric HSA. Furthermore, GA-Z binds to HSA both as a monomer and a dimer, and thus, it can be expected to stay bound also upon dilution following injection in the blood stream. The results from SAXS and binding studies indicate that the GA-Z dimer is formed between two target domains (Z-domains). The results also indicate that the binding of GA-Z to HSA does not affect the ratio between HSA dimers and monomers, and that no higher order oligomers of the complex are seen other than those containing dimers of GA-Z and dimers of HSA.</description><subject>Albumin</subject><subject>Analysis</subject><subject>Asymmetry</subject><subject>Binding</subject><subject>Binding sites</subject><subject>Biological products</subject><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Blood circulation</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Chromatography</subject><subject>Chromatography, Gel</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Dilution</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drug dosages</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Fatty acids</subject><subject>Food science</subject><subject>Fractionation</subject><subject>Human serum albumin</subject><subject>Humans</subject><subject>Industrial Biotechnology</subject><subject>Industriell bioteknik</subject><subject>Light scattering</subject><subject>Models, Molecular</subject><subject>Molecular Weight</subject><subject>Monomers</subject><subject>Nutrition</subject><subject>Oligomers</subject><subject>Peptides</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein separation</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Scattering, Small Angle</subject><subject>Serum albumin</subject><subject>Serum Albumin, Human - metabolism</subject><subject>Small angle X ray scattering</subject><subject>Teknik</subject><subject>X-ray scattering</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk29r1TAUxosobk6_gWhBEEXuTJqkad8Il6lzMBj4Z4hvwmlyem9G2lyT1jk_jR_VdPdu7MoECaGH5HeekzzpybLHlOxTJunrMz-GHtz-yve4TwpelETcyXZpzYpZWRB290a8kz2I8YwQwaqyvJ_tMFakIclu9vtgCQH0gMH-gsH6Pvdt3tje2H6RNzicI_Z55w26fBX8gLbPD-ezbzn0Jl-OHfR5xDB2Obhm7NLmGKdEiBddh0OwGlzeOn-etxadma3DqV6qtC43CcUOnEvRwmH-dRbgIo8ahulM_eJhdq8FF_HR5ruXfXn_7vPBh9nxyeHRwfx4pmUth5mujeSFNEZwJgpGiJZtoYta15SwpmgLo6uSVk1dAatlgwZBlg3FqgTZGG7YXvZ0rbtyPqqNuVEVvORUSEFkIo7WhPFwplbBdhAulAerLhd8WCgIg9UOFSTnJTasSoV5gwiCQFlJXYA2zNA2aR2vteI5rsZmS82NqzSbNFVERQSh0rSlYpxwxSVUCnQtFOWaaSom6SrJvfqn3Ft7Or88XLBKkJqLRL_ZXHVsOjQa-yGA20ra3untUi38DyXLSnDJk8CLjUDw30eMg-ps1Ogc9OjHjWlVRUSd0Gd_obdbu6EWkNyzfetTXT2JqnmZnpVSwcpE7d9CpWGwszq1QWvT-lbCy62ExAz4c1jAGKM6-vTx_9mT0232-Q12ieCGZfRunH7ouA3yNaiDjzFge20yJWrq4is31NTFatPFKe3JzQe6TrpqW_YHeU1Eog</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Choi, Jaeyeong</creator><creator>Wahlgren, Marie</creator><creator>Ek, Vilhelm</creator><creator>Elofsson, Ulla</creator><creator>Fransson, Jonas</creator><creator>Nilsson, Lars</creator><creator>Terry, Ann</creator><creator>Söderberg, Christopher A G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>AGCHP</scope><scope>D95</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0850-2676</orcidid></search><sort><creationdate>20201124</creationdate><title>Characterization of binding between model protein GA-Z and human serum albumin using asymmetrical flow field-flow fractionation and small angle X-ray scattering</title><author>Choi, Jaeyeong ; Wahlgren, Marie ; Ek, Vilhelm ; Elofsson, Ulla ; Fransson, Jonas ; Nilsson, Lars ; Terry, Ann ; Söderberg, Christopher A G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c797t-c9d7427dd54352300c7f2c29c9103b2f2dc8618b98a397bedea76b1e86a7bd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Albumin</topic><topic>Analysis</topic><topic>Asymmetry</topic><topic>Binding</topic><topic>Binding sites</topic><topic>Biological products</topic><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Blood circulation</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Chromatography</topic><topic>Chromatography, Gel</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Dilution</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drug dosages</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Fatty acids</topic><topic>Food science</topic><topic>Fractionation</topic><topic>Human serum albumin</topic><topic>Humans</topic><topic>Industrial Biotechnology</topic><topic>Industriell bioteknik</topic><topic>Light scattering</topic><topic>Models, Molecular</topic><topic>Molecular Weight</topic><topic>Monomers</topic><topic>Nutrition</topic><topic>Oligomers</topic><topic>Peptides</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein separation</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Scattering, Small Angle</topic><topic>Serum albumin</topic><topic>Serum Albumin, Human - metabolism</topic><topic>Small angle X ray scattering</topic><topic>Teknik</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jaeyeong</creatorcontrib><creatorcontrib>Wahlgren, Marie</creatorcontrib><creatorcontrib>Ek, Vilhelm</creatorcontrib><creatorcontrib>Elofsson, Ulla</creatorcontrib><creatorcontrib>Fransson, Jonas</creatorcontrib><creatorcontrib>Nilsson, Lars</creatorcontrib><creatorcontrib>Terry, Ann</creatorcontrib><creatorcontrib>Söderberg, Christopher A G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SWEPUB Lunds universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jaeyeong</au><au>Wahlgren, Marie</au><au>Ek, Vilhelm</au><au>Elofsson, Ulla</au><au>Fransson, Jonas</au><au>Nilsson, Lars</au><au>Terry, Ann</au><au>Söderberg, Christopher A G</au><au>Subramanyam, Rajagopal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of binding between model protein GA-Z and human serum albumin using asymmetrical flow field-flow fractionation and small angle X-ray scattering</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-24</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242605</spage><pages>e0242605-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Protein-based drugs often require targeted drug delivery for optimal therapy. A successful strategy to increase the circulation time of the protein in the blood is to link the therapeutic protein with an albumin-binding domain. In this work, we characterized such a protein-based drug, GA-Z. Using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering (AF4-MALS) we investigated the GA-Z monomer-dimer equilibrium as well as the molar binding ratio of GA-Z to HSA. Using small angle X-ray scattering, we studied the structure of GA-Z as well as the complex between GA-Z and HSA. The results show that GA-Z is predominantly dimeric in solution at pH 7 and that it binds to monomeric as well as dimeric HSA. Furthermore, GA-Z binds to HSA both as a monomer and a dimer, and thus, it can be expected to stay bound also upon dilution following injection in the blood stream. The results from SAXS and binding studies indicate that the GA-Z dimer is formed between two target domains (Z-domains). The results also indicate that the binding of GA-Z to HSA does not affect the ratio between HSA dimers and monomers, and that no higher order oligomers of the complex are seen other than those containing dimers of GA-Z and dimers of HSA.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33232370</pmid><doi>10.1371/journal.pone.0242605</doi><tpages>e0242605</tpages><orcidid>https://orcid.org/0000-0002-0850-2676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-11, Vol.15 (11), p.e0242605 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2464157507 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Albumin Analysis Asymmetry Binding Binding sites Biological products Biology and Life Sciences Blood Blood circulation Chemistry Techniques, Analytical - methods Chromatography Chromatography, Gel Crystal structure Crystallography Dilution Dimerization Dimers Drug delivery Drug delivery systems Drug dosages Earth Sciences Engineering Engineering and Technology Fatty acids Food science Fractionation Human serum albumin Humans Industrial Biotechnology Industriell bioteknik Light scattering Models, Molecular Molecular Weight Monomers Nutrition Oligomers Peptides Physical Sciences Protein Binding Protein Conformation Protein separation Proteins Recombinant Fusion Proteins - metabolism Research and Analysis Methods Scattering, Small Angle Serum albumin Serum Albumin, Human - metabolism Small angle X ray scattering Teknik X-ray scattering |
title | Characterization of binding between model protein GA-Z and human serum albumin using asymmetrical flow field-flow fractionation and small angle X-ray scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20binding%20between%20model%20protein%20GA-Z%20and%20human%20serum%20albumin%20using%20asymmetrical%20flow%20field-flow%20fractionation%20and%20small%20angle%20X-ray%20scattering&rft.jtitle=PloS%20one&rft.au=Choi,%20Jaeyeong&rft.date=2020-11-24&rft.volume=15&rft.issue=11&rft.spage=e0242605&rft.pages=e0242605-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242605&rft_dat=%3Cgale_plos_%3EA642711536%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464157507&rft_id=info:pmid/33232370&rft_galeid=A642711536&rft_doaj_id=oai_doaj_org_article_a1937eb382f24beea50a687c2acd3d1f&rfr_iscdi=true |