Sponge-derived Ageladine A affects the in vivo fluorescence emission spectra of microalgae
In several marine hosts of microalgae, fluorescent natural products may play an important role. While the ecological function of these compounds is not well understood, an interaction of these molecules with the photosynthesis of the symbionts has been suggested. In this study, the effect of Ageladi...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-11, Vol.15 (11), p.e0242464-e0242464 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0242464 |
---|---|
container_issue | 11 |
container_start_page | e0242464 |
container_title | PloS one |
container_volume | 15 |
creator | Peter, Carolin Thoms, Silke Koch, Florian Sartoris, Franz Josef Bickmeyer, Ulf |
description | In several marine hosts of microalgae, fluorescent natural products may play an important role. While the ecological function of these compounds is not well understood, an interaction of these molecules with the photosynthesis of the symbionts has been suggested. In this study, the effect of Ageladine A (Ag A), a pH-dependent fluorophore found in sponges of the genus Agelas, on microalgal fluorescence was examined. The spectra showed an accumulation of Ag A within the cells, but with variable impacts on fluorescence. While in two Synechococcus strains, fluorescence of phycoerythrin increased significantly, the fluorescence of other Synechococcus strains was not affected. In four out of the five eukaryote species examined, chlorophyll a (Chl a) fluorescence intensity was modulated. In Tisochrysis lutea, for example, the position of the fluorescence emission maximum of Chl a was shifted. The variety of these effects of Ag A on microalgal fluorescence suggests that fluorophores derived from animals could play a crucial role in shaping the composition of marine host/symbiont systems. |
doi_str_mv | 10.1371/journal.pone.0242464 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2462406053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642270481</galeid><doaj_id>oai_doaj_org_article_3f38f2934df9471a97af7e46baee25ee</doaj_id><sourcerecordid>A642270481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f22e6df2851b4678b824cfb37a0a50086a4d12f68daf445aeb530a1de27557b33</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq0rkRhsWPgYUFV73wJpy2J50smWY2aQf992Z2ustU9kJ60ZI-75ucN-dk2UtK5pQr-uHaD6EDN9_6DueECSakeJSd0gVnM8kIf3z0fZI9i_GakIKXUj7NTjhnlKqCnWa_rpK-xVmDwe6wyZctOmhsh_kyB2Ow7mPerzG3Xb6zO58bN_iAscauxhw3NkbruzxuExgg9ybf2Dp4cC3g8-yJARfxxfg-y358_vT9_Ovs4vLL6nx5MavlgvUzwxjKxrCyoJWQqqxKJmpTcQUECkJKCaKhzMiyASNEAVgVnABtkKmiUBXnZ9nrg-_W-ajHWKJOeTBBZKo5EasD0Xi41ttgNxD-aA9W3y740GoIva0dam54adiCi8YshKKwUGAUClkBIisQk9fHcbeh2mCTgkiFu4np9E9n17r1O62kklKoZPBuNAj-ZsDY65Rijc5Bh364PTenhIpCJPTNP-jD1Y1UC6kA2xmf9q33pnopBWOKiJImav4AlZ4m3WKdesjYtD4RvJ8IEtPj776FIUa9uvr2_-zlzyn79ohdI7h-Hb0b-tRIcQqKA5gaKsaA5j5kSvR-BO7S0PsR0OMIJNmr4wu6F931PP8L5iwAuA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462406053</pqid></control><display><type>article</type><title>Sponge-derived Ageladine A affects the in vivo fluorescence emission spectra of microalgae</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS) Journals Open Acc</source><creator>Peter, Carolin ; Thoms, Silke ; Koch, Florian ; Sartoris, Franz Josef ; Bickmeyer, Ulf</creator><contributor>Selvin, Joseph</contributor><creatorcontrib>Peter, Carolin ; Thoms, Silke ; Koch, Florian ; Sartoris, Franz Josef ; Bickmeyer, Ulf ; Selvin, Joseph</creatorcontrib><description>In several marine hosts of microalgae, fluorescent natural products may play an important role. While the ecological function of these compounds is not well understood, an interaction of these molecules with the photosynthesis of the symbionts has been suggested. In this study, the effect of Ageladine A (Ag A), a pH-dependent fluorophore found in sponges of the genus Agelas, on microalgal fluorescence was examined. The spectra showed an accumulation of Ag A within the cells, but with variable impacts on fluorescence. While in two Synechococcus strains, fluorescence of phycoerythrin increased significantly, the fluorescence of other Synechococcus strains was not affected. In four out of the five eukaryote species examined, chlorophyll a (Chl a) fluorescence intensity was modulated. In Tisochrysis lutea, for example, the position of the fluorescence emission maximum of Chl a was shifted. The variety of these effects of Ag A on microalgal fluorescence suggests that fluorophores derived from animals could play a crucial role in shaping the composition of marine host/symbiont systems.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242464</identifier><identifier>PMID: 33211752</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agelas - chemistry ; Algae ; Animals ; Aquatic microorganisms ; Biological research ; Biology and Life Sciences ; Bioluminescence ; Chemical compounds ; Chemistry ; Chlorophyll ; Chlorophyll A - chemistry ; Ecological function ; Ecology and Environmental Sciences ; Emission spectra ; Emissions ; Eukaryotes ; Fluorescence ; Fluorescent chemicals ; Fluorophores ; Marine algae ; Micrasterias - drug effects ; Micrasterias - metabolism ; Microalgae ; Microalgae - drug effects ; Microalgae - metabolism ; Microorganisms ; Natural products ; Optical properties ; pH effects ; Photosynthesis ; Photosynthesis - drug effects ; Photosynthesis - radiation effects ; Phycobilisomes - chemistry ; Phycobilisomes - drug effects ; Phycoerythrin - chemistry ; Physical Sciences ; Physiological aspects ; Pigments ; Pigments, Biological - chemistry ; Pyrroles - isolation & purification ; Pyrroles - pharmacology ; Species Specificity ; Spectrometry, Fluorescence ; Sponges (Animals) ; Symbionts ; Symbiosis ; Synechococcus ; Synechococcus - drug effects ; Synechococcus - metabolism ; Ultraviolet Rays</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242464-e0242464</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Peter et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Peter et al 2020 Peter et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f22e6df2851b4678b824cfb37a0a50086a4d12f68daf445aeb530a1de27557b33</citedby><cites>FETCH-LOGICAL-c692t-f22e6df2851b4678b824cfb37a0a50086a4d12f68daf445aeb530a1de27557b33</cites><orcidid>0000-0002-5351-2902 ; 0000-0002-9584-6214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676647/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676647/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33211752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Selvin, Joseph</contributor><creatorcontrib>Peter, Carolin</creatorcontrib><creatorcontrib>Thoms, Silke</creatorcontrib><creatorcontrib>Koch, Florian</creatorcontrib><creatorcontrib>Sartoris, Franz Josef</creatorcontrib><creatorcontrib>Bickmeyer, Ulf</creatorcontrib><title>Sponge-derived Ageladine A affects the in vivo fluorescence emission spectra of microalgae</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In several marine hosts of microalgae, fluorescent natural products may play an important role. While the ecological function of these compounds is not well understood, an interaction of these molecules with the photosynthesis of the symbionts has been suggested. In this study, the effect of Ageladine A (Ag A), a pH-dependent fluorophore found in sponges of the genus Agelas, on microalgal fluorescence was examined. The spectra showed an accumulation of Ag A within the cells, but with variable impacts on fluorescence. While in two Synechococcus strains, fluorescence of phycoerythrin increased significantly, the fluorescence of other Synechococcus strains was not affected. In four out of the five eukaryote species examined, chlorophyll a (Chl a) fluorescence intensity was modulated. In Tisochrysis lutea, for example, the position of the fluorescence emission maximum of Chl a was shifted. The variety of these effects of Ag A on microalgal fluorescence suggests that fluorophores derived from animals could play a crucial role in shaping the composition of marine host/symbiont systems.</description><subject>Agelas - chemistry</subject><subject>Algae</subject><subject>Animals</subject><subject>Aquatic microorganisms</subject><subject>Biological research</subject><subject>Biology and Life Sciences</subject><subject>Bioluminescence</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chlorophyll</subject><subject>Chlorophyll A - chemistry</subject><subject>Ecological function</subject><subject>Ecology and Environmental Sciences</subject><subject>Emission spectra</subject><subject>Emissions</subject><subject>Eukaryotes</subject><subject>Fluorescence</subject><subject>Fluorescent chemicals</subject><subject>Fluorophores</subject><subject>Marine algae</subject><subject>Micrasterias - drug effects</subject><subject>Micrasterias - metabolism</subject><subject>Microalgae</subject><subject>Microalgae - drug effects</subject><subject>Microalgae - metabolism</subject><subject>Microorganisms</subject><subject>Natural products</subject><subject>Optical properties</subject><subject>pH effects</subject><subject>Photosynthesis</subject><subject>Photosynthesis - drug effects</subject><subject>Photosynthesis - radiation effects</subject><subject>Phycobilisomes - chemistry</subject><subject>Phycobilisomes - drug effects</subject><subject>Phycoerythrin - chemistry</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Pigments</subject><subject>Pigments, Biological - chemistry</subject><subject>Pyrroles - isolation & purification</subject><subject>Pyrroles - pharmacology</subject><subject>Species Specificity</subject><subject>Spectrometry, Fluorescence</subject><subject>Sponges (Animals)</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Synechococcus</subject><subject>Synechococcus - drug effects</subject><subject>Synechococcus - metabolism</subject><subject>Ultraviolet Rays</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq0rkRhsWPgYUFV73wJpy2J50smWY2aQf992Z2ustU9kJ60ZI-75ucN-dk2UtK5pQr-uHaD6EDN9_6DueECSakeJSd0gVnM8kIf3z0fZI9i_GakIKXUj7NTjhnlKqCnWa_rpK-xVmDwe6wyZctOmhsh_kyB2Ow7mPerzG3Xb6zO58bN_iAscauxhw3NkbruzxuExgg9ybf2Dp4cC3g8-yJARfxxfg-y358_vT9_Ovs4vLL6nx5MavlgvUzwxjKxrCyoJWQqqxKJmpTcQUECkJKCaKhzMiyASNEAVgVnABtkKmiUBXnZ9nrg-_W-ajHWKJOeTBBZKo5EasD0Xi41ttgNxD-aA9W3y740GoIva0dam54adiCi8YshKKwUGAUClkBIisQk9fHcbeh2mCTgkiFu4np9E9n17r1O62kklKoZPBuNAj-ZsDY65Rijc5Bh364PTenhIpCJPTNP-jD1Y1UC6kA2xmf9q33pnopBWOKiJImav4AlZ4m3WKdesjYtD4RvJ8IEtPj776FIUa9uvr2_-zlzyn79ohdI7h-Hb0b-tRIcQqKA5gaKsaA5j5kSvR-BO7S0PsR0OMIJNmr4wu6F931PP8L5iwAuA</recordid><startdate>20201119</startdate><enddate>20201119</enddate><creator>Peter, Carolin</creator><creator>Thoms, Silke</creator><creator>Koch, Florian</creator><creator>Sartoris, Franz Josef</creator><creator>Bickmeyer, Ulf</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5351-2902</orcidid><orcidid>https://orcid.org/0000-0002-9584-6214</orcidid></search><sort><creationdate>20201119</creationdate><title>Sponge-derived Ageladine A affects the in vivo fluorescence emission spectra of microalgae</title><author>Peter, Carolin ; Thoms, Silke ; Koch, Florian ; Sartoris, Franz Josef ; Bickmeyer, Ulf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f22e6df2851b4678b824cfb37a0a50086a4d12f68daf445aeb530a1de27557b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agelas - chemistry</topic><topic>Algae</topic><topic>Animals</topic><topic>Aquatic microorganisms</topic><topic>Biological research</topic><topic>Biology and Life Sciences</topic><topic>Bioluminescence</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chlorophyll</topic><topic>Chlorophyll A - chemistry</topic><topic>Ecological function</topic><topic>Ecology and Environmental Sciences</topic><topic>Emission spectra</topic><topic>Emissions</topic><topic>Eukaryotes</topic><topic>Fluorescence</topic><topic>Fluorescent chemicals</topic><topic>Fluorophores</topic><topic>Marine algae</topic><topic>Micrasterias - drug effects</topic><topic>Micrasterias - metabolism</topic><topic>Microalgae</topic><topic>Microalgae - drug effects</topic><topic>Microalgae - metabolism</topic><topic>Microorganisms</topic><topic>Natural products</topic><topic>Optical properties</topic><topic>pH effects</topic><topic>Photosynthesis</topic><topic>Photosynthesis - drug effects</topic><topic>Photosynthesis - radiation effects</topic><topic>Phycobilisomes - chemistry</topic><topic>Phycobilisomes - drug effects</topic><topic>Phycoerythrin - chemistry</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Pigments</topic><topic>Pigments, Biological - chemistry</topic><topic>Pyrroles - isolation & purification</topic><topic>Pyrroles - pharmacology</topic><topic>Species Specificity</topic><topic>Spectrometry, Fluorescence</topic><topic>Sponges (Animals)</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Synechococcus</topic><topic>Synechococcus - drug effects</topic><topic>Synechococcus - metabolism</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter, Carolin</creatorcontrib><creatorcontrib>Thoms, Silke</creatorcontrib><creatorcontrib>Koch, Florian</creatorcontrib><creatorcontrib>Sartoris, Franz Josef</creatorcontrib><creatorcontrib>Bickmeyer, Ulf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peter, Carolin</au><au>Thoms, Silke</au><au>Koch, Florian</au><au>Sartoris, Franz Josef</au><au>Bickmeyer, Ulf</au><au>Selvin, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sponge-derived Ageladine A affects the in vivo fluorescence emission spectra of microalgae</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-19</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242464</spage><epage>e0242464</epage><pages>e0242464-e0242464</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In several marine hosts of microalgae, fluorescent natural products may play an important role. While the ecological function of these compounds is not well understood, an interaction of these molecules with the photosynthesis of the symbionts has been suggested. In this study, the effect of Ageladine A (Ag A), a pH-dependent fluorophore found in sponges of the genus Agelas, on microalgal fluorescence was examined. The spectra showed an accumulation of Ag A within the cells, but with variable impacts on fluorescence. While in two Synechococcus strains, fluorescence of phycoerythrin increased significantly, the fluorescence of other Synechococcus strains was not affected. In four out of the five eukaryote species examined, chlorophyll a (Chl a) fluorescence intensity was modulated. In Tisochrysis lutea, for example, the position of the fluorescence emission maximum of Chl a was shifted. The variety of these effects of Ag A on microalgal fluorescence suggests that fluorophores derived from animals could play a crucial role in shaping the composition of marine host/symbiont systems.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33211752</pmid><doi>10.1371/journal.pone.0242464</doi><tpages>e0242464</tpages><orcidid>https://orcid.org/0000-0002-5351-2902</orcidid><orcidid>https://orcid.org/0000-0002-9584-6214</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-11, Vol.15 (11), p.e0242464-e0242464 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2462406053 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) Journals Open Acc |
subjects | Agelas - chemistry Algae Animals Aquatic microorganisms Biological research Biology and Life Sciences Bioluminescence Chemical compounds Chemistry Chlorophyll Chlorophyll A - chemistry Ecological function Ecology and Environmental Sciences Emission spectra Emissions Eukaryotes Fluorescence Fluorescent chemicals Fluorophores Marine algae Micrasterias - drug effects Micrasterias - metabolism Microalgae Microalgae - drug effects Microalgae - metabolism Microorganisms Natural products Optical properties pH effects Photosynthesis Photosynthesis - drug effects Photosynthesis - radiation effects Phycobilisomes - chemistry Phycobilisomes - drug effects Phycoerythrin - chemistry Physical Sciences Physiological aspects Pigments Pigments, Biological - chemistry Pyrroles - isolation & purification Pyrroles - pharmacology Species Specificity Spectrometry, Fluorescence Sponges (Animals) Symbionts Symbiosis Synechococcus Synechococcus - drug effects Synechococcus - metabolism Ultraviolet Rays |
title | Sponge-derived Ageladine A affects the in vivo fluorescence emission spectra of microalgae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sponge-derived%20Ageladine%20A%20affects%20the%20in%20vivo%20fluorescence%20emission%20spectra%20of%20microalgae&rft.jtitle=PloS%20one&rft.au=Peter,%20Carolin&rft.date=2020-11-19&rft.volume=15&rft.issue=11&rft.spage=e0242464&rft.epage=e0242464&rft.pages=e0242464-e0242464&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242464&rft_dat=%3Cgale_plos_%3EA642270481%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462406053&rft_id=info:pmid/33211752&rft_galeid=A642270481&rft_doaj_id=oai_doaj_org_article_3f38f2934df9471a97af7e46baee25ee&rfr_iscdi=true |