Can the use of older-generation beta-lactam antibiotics in livestock production over-select for beta-lactamases of greatest consequence for human medicine? An in vitro experimental model

Though carbapenems are not licensed for use in food animals in the U.S., carbapenem resistance among Enterobacteriaceae has been identified in farm animals and their environments. The objective of our study was to determine the extent to which older-generation β-lactam antibiotics approved for use i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-11, Vol.15 (11), p.e0242195-e0242195
Hauptverfasser: Ogunrinu, Olanrewaju J, Norman, Keri N, Vinasco, Javier, Levent, Gizem, Lawhon, Sara D, Fajt, Virginia R, Volkova, Victoria V, Gaire, Tara, Poole, Toni L, Genovese, Kenneth J, Wittum, Thomas E, Scott, H Morgan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0242195
container_issue 11
container_start_page e0242195
container_title PloS one
container_volume 15
creator Ogunrinu, Olanrewaju J
Norman, Keri N
Vinasco, Javier
Levent, Gizem
Lawhon, Sara D
Fajt, Virginia R
Volkova, Victoria V
Gaire, Tara
Poole, Toni L
Genovese, Kenneth J
Wittum, Thomas E
Scott, H Morgan
description Though carbapenems are not licensed for use in food animals in the U.S., carbapenem resistance among Enterobacteriaceae has been identified in farm animals and their environments. The objective of our study was to determine the extent to which older-generation β-lactam antibiotics approved for use in food animals in the U.S. might differentially select for resistance to antibiotics of critical importance to human health, such as carbapenems. Escherichia coli (E. coli) strains from humans, food animals, or the environment bearing a single β-lactamase gene (n = 20 each) for blaTEM-1, blaCMY-2, and blaCTX-M-* or else blaKPC/IMP/NDM (due to limited availability, often in combination with other bla genes), were identified, along with 20 E. coli strains lacking any known beta-lactamase genes. Baseline estimates of intrinsic bacterial fitness were derived from the population growth curves. Effects of ampicillin (32 μg/mL), ceftriaxone (4 μg/mL) and meropenem (4 μg/mL) on each strain and resistance-group also were assessed. Further, in vitro batch cultures were prepared by mixing equal concentrations of 10 representative E. coli strains (two from each resistance gene group), and each mixture was incubated at 37°C for 24 hours in non-antibiotic cation-adjusted Mueller-Hinton II (CAMH-2) broth, ampicillin + CAMH-2 broth (at 2, 4, 8, 16, and 32 μg/mL) and ceftiofur + CAMH-2 broth (at 0.5, 1, 2, 4, and 8μg/mL). Relative and absolute abundance of resistance-groups were estimated phenotypically. Line plots of the raw data were generated, and non-linear Gompertz models and multilevel mixed-effect linear regression models were fitted to the data. The observed strain growth rate distributions were significantly different across the groups. AmpC strains (i.e., blaCMY-2) had distinctly less robust (p < 0.05) growth in ceftriaxone (4 μg/mL) compared to extended-spectrum beta-lactamase (ESBL) producers harboring blaCTX-M-*variants. With increasing beta-lactam antibiotic concentrations, relative proportions of ESBLs and CREs were over-represented in the mixed bacterial communities; importantly, this was more pronounced with ceftiofur than with ampicillin. These results indicate that aminopenicillins and extended-spectrum cephalosporins would be expected to propagate carbapenemase-producing Enterobacteriaceae in food animals if and when Enterobacteriaceae from human health care settings enter the food animal environment.
doi_str_mv 10.1371/journal.pone.0242195
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460992586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641970282</galeid><doaj_id>oai_doaj_org_article_fcbf77a0b2dd44bab2deaeb33ce851f3</doaj_id><sourcerecordid>A641970282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-dc590ef0085f63e796eab0ce2c05a1758075e77486801275452f832d913453d43</originalsourceid><addsrcrecordid>eNqNk8tu1DAUhiMEoqXwBggsISFYzOBL7CQbUDXiUqlSJW5by3FOZlwce2o7o_JqPB3OdFrNoC5QFo6c7__P8e-conhO8Jywiry79GNwys7X3sEc05KShj8ojknD6ExQzB7uvR8VT2K8xJizWojHxRFjpBFC0OPiz0I5lFaAxgjI98jbDsJsCQ6CSsY71EJSM6t0UgNSLpnW-GR0RMYhazYQk9e_0Dr4btRb3m-yPoIFnVDvw75eRYhTjWUAlbISae8iXI3gNGzZ1TjkbgbojDYOPqBTN5XZmBQ8gus1BDOAS8qiwXdgnxaPemUjPNutJ8WPTx-_L77Mzi8-ny1Oz2daNDTNOs0bDD3GNe8Fg6oRoFqsgWrMFal4jSsOVVXWosaEVrzktK8Z7RrCSs66kp0UL29819ZHuYs9SloK3DSU1yITZzdE59WlXOc2VfgtvTJyu-HDUqqQU7Mge932VaVwS7uuLFuVV1DQMqah5qRn2ev9rtrY5iR0PnBQ9sD08IszK7n0G1kJUfNqMnizMwg-ZxuTHEzUYK1y4Mdt36TEuKJNRl_9g95_uh21VPkAxvU-19WTqTwVJWkqTGuaqfk9VH46GEy-aOhN3j8QvD0QZCbBdVqqMUZ59u3r_7MXPw_Z13vsCpRNq-jtOP2d8RAsb0AdfIwB-ruQCZbTiN2mIacRk7sRy7IX-xd0J7qdKfYXt6YlIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460992586</pqid></control><display><type>article</type><title>Can the use of older-generation beta-lactam antibiotics in livestock production over-select for beta-lactamases of greatest consequence for human medicine? An in vitro experimental model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ogunrinu, Olanrewaju J ; Norman, Keri N ; Vinasco, Javier ; Levent, Gizem ; Lawhon, Sara D ; Fajt, Virginia R ; Volkova, Victoria V ; Gaire, Tara ; Poole, Toni L ; Genovese, Kenneth J ; Wittum, Thomas E ; Scott, H Morgan</creator><contributor>Karunasagar, Iddya</contributor><creatorcontrib>Ogunrinu, Olanrewaju J ; Norman, Keri N ; Vinasco, Javier ; Levent, Gizem ; Lawhon, Sara D ; Fajt, Virginia R ; Volkova, Victoria V ; Gaire, Tara ; Poole, Toni L ; Genovese, Kenneth J ; Wittum, Thomas E ; Scott, H Morgan ; Karunasagar, Iddya</creatorcontrib><description>Though carbapenems are not licensed for use in food animals in the U.S., carbapenem resistance among Enterobacteriaceae has been identified in farm animals and their environments. The objective of our study was to determine the extent to which older-generation β-lactam antibiotics approved for use in food animals in the U.S. might differentially select for resistance to antibiotics of critical importance to human health, such as carbapenems. Escherichia coli (E. coli) strains from humans, food animals, or the environment bearing a single β-lactamase gene (n = 20 each) for blaTEM-1, blaCMY-2, and blaCTX-M-* or else blaKPC/IMP/NDM (due to limited availability, often in combination with other bla genes), were identified, along with 20 E. coli strains lacking any known beta-lactamase genes. Baseline estimates of intrinsic bacterial fitness were derived from the population growth curves. Effects of ampicillin (32 μg/mL), ceftriaxone (4 μg/mL) and meropenem (4 μg/mL) on each strain and resistance-group also were assessed. Further, in vitro batch cultures were prepared by mixing equal concentrations of 10 representative E. coli strains (two from each resistance gene group), and each mixture was incubated at 37°C for 24 hours in non-antibiotic cation-adjusted Mueller-Hinton II (CAMH-2) broth, ampicillin + CAMH-2 broth (at 2, 4, 8, 16, and 32 μg/mL) and ceftiofur + CAMH-2 broth (at 0.5, 1, 2, 4, and 8μg/mL). Relative and absolute abundance of resistance-groups were estimated phenotypically. Line plots of the raw data were generated, and non-linear Gompertz models and multilevel mixed-effect linear regression models were fitted to the data. The observed strain growth rate distributions were significantly different across the groups. AmpC strains (i.e., blaCMY-2) had distinctly less robust (p &lt; 0.05) growth in ceftriaxone (4 μg/mL) compared to extended-spectrum beta-lactamase (ESBL) producers harboring blaCTX-M-*variants. With increasing beta-lactam antibiotic concentrations, relative proportions of ESBLs and CREs were over-represented in the mixed bacterial communities; importantly, this was more pronounced with ceftiofur than with ampicillin. These results indicate that aminopenicillins and extended-spectrum cephalosporins would be expected to propagate carbapenemase-producing Enterobacteriaceae in food animals if and when Enterobacteriaceae from human health care settings enter the food animal environment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242195</identifier><identifier>PMID: 33196662</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural research ; Amides ; Ampicillin ; Animal products ; Animals ; Antibiotics ; Antimicrobial agents ; Bacteria ; Beta lactam antibiotics ; beta-Lactam Resistance ; beta-Lactamase Inhibitors - pharmacology ; beta-Lactamases - genetics ; Biology and Life Sciences ; Carbapenemase ; Carbapenems ; Carbapenems - pharmacology ; Ceftriaxone ; Cephalosporins ; Comparative analysis ; Dairy cattle ; Drug resistance ; E coli ; Enterobacteriaceae ; Enzymes ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - genetics ; FDA approval ; Food ; Food and nutrition ; Genes ; Gram-negative bacteria ; Gram-positive bacteria ; Growth curves ; Growth rate ; Health aspects ; Health care ; Livestock ; Livestock production ; Medical research ; Medicine and Health Sciences ; Meropenem ; Microbial drug resistance ; Nosocomial infections ; Penicillin ; Plasmids ; Population growth ; Preventive medicine ; Production processes ; Public health ; Regression analysis ; Regression models ; Research and Analysis Methods ; Selection, Genetic ; Strains (organisms) ; Urogenital system ; Veterinary antibiotics ; β Lactamase ; β-Lactam antibiotics</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242195-e0242195</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-dc590ef0085f63e796eab0ce2c05a1758075e77486801275452f832d913453d43</citedby><cites>FETCH-LOGICAL-c692t-dc590ef0085f63e796eab0ce2c05a1758075e77486801275452f832d913453d43</cites><orcidid>0000-0002-0538-5961 ; 0000-0001-9207-9999 ; 0000-0002-9216-1308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668573/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668573/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33196662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Karunasagar, Iddya</contributor><creatorcontrib>Ogunrinu, Olanrewaju J</creatorcontrib><creatorcontrib>Norman, Keri N</creatorcontrib><creatorcontrib>Vinasco, Javier</creatorcontrib><creatorcontrib>Levent, Gizem</creatorcontrib><creatorcontrib>Lawhon, Sara D</creatorcontrib><creatorcontrib>Fajt, Virginia R</creatorcontrib><creatorcontrib>Volkova, Victoria V</creatorcontrib><creatorcontrib>Gaire, Tara</creatorcontrib><creatorcontrib>Poole, Toni L</creatorcontrib><creatorcontrib>Genovese, Kenneth J</creatorcontrib><creatorcontrib>Wittum, Thomas E</creatorcontrib><creatorcontrib>Scott, H Morgan</creatorcontrib><title>Can the use of older-generation beta-lactam antibiotics in livestock production over-select for beta-lactamases of greatest consequence for human medicine? An in vitro experimental model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Though carbapenems are not licensed for use in food animals in the U.S., carbapenem resistance among Enterobacteriaceae has been identified in farm animals and their environments. The objective of our study was to determine the extent to which older-generation β-lactam antibiotics approved for use in food animals in the U.S. might differentially select for resistance to antibiotics of critical importance to human health, such as carbapenems. Escherichia coli (E. coli) strains from humans, food animals, or the environment bearing a single β-lactamase gene (n = 20 each) for blaTEM-1, blaCMY-2, and blaCTX-M-* or else blaKPC/IMP/NDM (due to limited availability, often in combination with other bla genes), were identified, along with 20 E. coli strains lacking any known beta-lactamase genes. Baseline estimates of intrinsic bacterial fitness were derived from the population growth curves. Effects of ampicillin (32 μg/mL), ceftriaxone (4 μg/mL) and meropenem (4 μg/mL) on each strain and resistance-group also were assessed. Further, in vitro batch cultures were prepared by mixing equal concentrations of 10 representative E. coli strains (two from each resistance gene group), and each mixture was incubated at 37°C for 24 hours in non-antibiotic cation-adjusted Mueller-Hinton II (CAMH-2) broth, ampicillin + CAMH-2 broth (at 2, 4, 8, 16, and 32 μg/mL) and ceftiofur + CAMH-2 broth (at 0.5, 1, 2, 4, and 8μg/mL). Relative and absolute abundance of resistance-groups were estimated phenotypically. Line plots of the raw data were generated, and non-linear Gompertz models and multilevel mixed-effect linear regression models were fitted to the data. The observed strain growth rate distributions were significantly different across the groups. AmpC strains (i.e., blaCMY-2) had distinctly less robust (p &lt; 0.05) growth in ceftriaxone (4 μg/mL) compared to extended-spectrum beta-lactamase (ESBL) producers harboring blaCTX-M-*variants. With increasing beta-lactam antibiotic concentrations, relative proportions of ESBLs and CREs were over-represented in the mixed bacterial communities; importantly, this was more pronounced with ceftiofur than with ampicillin. These results indicate that aminopenicillins and extended-spectrum cephalosporins would be expected to propagate carbapenemase-producing Enterobacteriaceae in food animals if and when Enterobacteriaceae from human health care settings enter the food animal environment.</description><subject>Agricultural research</subject><subject>Amides</subject><subject>Ampicillin</subject><subject>Animal products</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Beta lactam antibiotics</subject><subject>beta-Lactam Resistance</subject><subject>beta-Lactamase Inhibitors - pharmacology</subject><subject>beta-Lactamases - genetics</subject><subject>Biology and Life Sciences</subject><subject>Carbapenemase</subject><subject>Carbapenems</subject><subject>Carbapenems - pharmacology</subject><subject>Ceftriaxone</subject><subject>Cephalosporins</subject><subject>Comparative analysis</subject><subject>Dairy cattle</subject><subject>Drug resistance</subject><subject>E coli</subject><subject>Enterobacteriaceae</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>FDA approval</subject><subject>Food</subject><subject>Food and nutrition</subject><subject>Genes</subject><subject>Gram-negative bacteria</subject><subject>Gram-positive bacteria</subject><subject>Growth curves</subject><subject>Growth rate</subject><subject>Health aspects</subject><subject>Health care</subject><subject>Livestock</subject><subject>Livestock production</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Meropenem</subject><subject>Microbial drug resistance</subject><subject>Nosocomial infections</subject><subject>Penicillin</subject><subject>Plasmids</subject><subject>Population growth</subject><subject>Preventive medicine</subject><subject>Production processes</subject><subject>Public health</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Selection, Genetic</subject><subject>Strains (organisms)</subject><subject>Urogenital system</subject><subject>Veterinary antibiotics</subject><subject>β Lactamase</subject><subject>β-Lactam antibiotics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tu1DAUhiMEoqXwBggsISFYzOBL7CQbUDXiUqlSJW5by3FOZlwce2o7o_JqPB3OdFrNoC5QFo6c7__P8e-conhO8Jywiry79GNwys7X3sEc05KShj8ojknD6ExQzB7uvR8VT2K8xJizWojHxRFjpBFC0OPiz0I5lFaAxgjI98jbDsJsCQ6CSsY71EJSM6t0UgNSLpnW-GR0RMYhazYQk9e_0Dr4btRb3m-yPoIFnVDvw75eRYhTjWUAlbISae8iXI3gNGzZ1TjkbgbojDYOPqBTN5XZmBQ8gus1BDOAS8qiwXdgnxaPemUjPNutJ8WPTx-_L77Mzi8-ny1Oz2daNDTNOs0bDD3GNe8Fg6oRoFqsgWrMFal4jSsOVVXWosaEVrzktK8Z7RrCSs66kp0UL29819ZHuYs9SloK3DSU1yITZzdE59WlXOc2VfgtvTJyu-HDUqqQU7Mge932VaVwS7uuLFuVV1DQMqah5qRn2ev9rtrY5iR0PnBQ9sD08IszK7n0G1kJUfNqMnizMwg-ZxuTHEzUYK1y4Mdt36TEuKJNRl_9g95_uh21VPkAxvU-19WTqTwVJWkqTGuaqfk9VH46GEy-aOhN3j8QvD0QZCbBdVqqMUZ59u3r_7MXPw_Z13vsCpRNq-jtOP2d8RAsb0AdfIwB-ruQCZbTiN2mIacRk7sRy7IX-xd0J7qdKfYXt6YlIA</recordid><startdate>20201116</startdate><enddate>20201116</enddate><creator>Ogunrinu, Olanrewaju J</creator><creator>Norman, Keri N</creator><creator>Vinasco, Javier</creator><creator>Levent, Gizem</creator><creator>Lawhon, Sara D</creator><creator>Fajt, Virginia R</creator><creator>Volkova, Victoria V</creator><creator>Gaire, Tara</creator><creator>Poole, Toni L</creator><creator>Genovese, Kenneth J</creator><creator>Wittum, Thomas E</creator><creator>Scott, H Morgan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0538-5961</orcidid><orcidid>https://orcid.org/0000-0001-9207-9999</orcidid><orcidid>https://orcid.org/0000-0002-9216-1308</orcidid></search><sort><creationdate>20201116</creationdate><title>Can the use of older-generation beta-lactam antibiotics in livestock production over-select for beta-lactamases of greatest consequence for human medicine? An in vitro experimental model</title><author>Ogunrinu, Olanrewaju J ; Norman, Keri N ; Vinasco, Javier ; Levent, Gizem ; Lawhon, Sara D ; Fajt, Virginia R ; Volkova, Victoria V ; Gaire, Tara ; Poole, Toni L ; Genovese, Kenneth J ; Wittum, Thomas E ; Scott, H Morgan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-dc590ef0085f63e796eab0ce2c05a1758075e77486801275452f832d913453d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural research</topic><topic>Amides</topic><topic>Ampicillin</topic><topic>Animal products</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Beta lactam antibiotics</topic><topic>beta-Lactam Resistance</topic><topic>beta-Lactamase Inhibitors - pharmacology</topic><topic>beta-Lactamases - genetics</topic><topic>Biology and Life Sciences</topic><topic>Carbapenemase</topic><topic>Carbapenems</topic><topic>Carbapenems - pharmacology</topic><topic>Ceftriaxone</topic><topic>Cephalosporins</topic><topic>Comparative analysis</topic><topic>Dairy cattle</topic><topic>Drug resistance</topic><topic>E coli</topic><topic>Enterobacteriaceae</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>FDA approval</topic><topic>Food</topic><topic>Food and nutrition</topic><topic>Genes</topic><topic>Gram-negative bacteria</topic><topic>Gram-positive bacteria</topic><topic>Growth curves</topic><topic>Growth rate</topic><topic>Health aspects</topic><topic>Health care</topic><topic>Livestock</topic><topic>Livestock production</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Meropenem</topic><topic>Microbial drug resistance</topic><topic>Nosocomial infections</topic><topic>Penicillin</topic><topic>Plasmids</topic><topic>Population growth</topic><topic>Preventive medicine</topic><topic>Production processes</topic><topic>Public health</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Selection, Genetic</topic><topic>Strains (organisms)</topic><topic>Urogenital system</topic><topic>Veterinary antibiotics</topic><topic>β Lactamase</topic><topic>β-Lactam antibiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogunrinu, Olanrewaju J</creatorcontrib><creatorcontrib>Norman, Keri N</creatorcontrib><creatorcontrib>Vinasco, Javier</creatorcontrib><creatorcontrib>Levent, Gizem</creatorcontrib><creatorcontrib>Lawhon, Sara D</creatorcontrib><creatorcontrib>Fajt, Virginia R</creatorcontrib><creatorcontrib>Volkova, Victoria V</creatorcontrib><creatorcontrib>Gaire, Tara</creatorcontrib><creatorcontrib>Poole, Toni L</creatorcontrib><creatorcontrib>Genovese, Kenneth J</creatorcontrib><creatorcontrib>Wittum, Thomas E</creatorcontrib><creatorcontrib>Scott, H Morgan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogunrinu, Olanrewaju J</au><au>Norman, Keri N</au><au>Vinasco, Javier</au><au>Levent, Gizem</au><au>Lawhon, Sara D</au><au>Fajt, Virginia R</au><au>Volkova, Victoria V</au><au>Gaire, Tara</au><au>Poole, Toni L</au><au>Genovese, Kenneth J</au><au>Wittum, Thomas E</au><au>Scott, H Morgan</au><au>Karunasagar, Iddya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can the use of older-generation beta-lactam antibiotics in livestock production over-select for beta-lactamases of greatest consequence for human medicine? An in vitro experimental model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-16</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242195</spage><epage>e0242195</epage><pages>e0242195-e0242195</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Though carbapenems are not licensed for use in food animals in the U.S., carbapenem resistance among Enterobacteriaceae has been identified in farm animals and their environments. The objective of our study was to determine the extent to which older-generation β-lactam antibiotics approved for use in food animals in the U.S. might differentially select for resistance to antibiotics of critical importance to human health, such as carbapenems. Escherichia coli (E. coli) strains from humans, food animals, or the environment bearing a single β-lactamase gene (n = 20 each) for blaTEM-1, blaCMY-2, and blaCTX-M-* or else blaKPC/IMP/NDM (due to limited availability, often in combination with other bla genes), were identified, along with 20 E. coli strains lacking any known beta-lactamase genes. Baseline estimates of intrinsic bacterial fitness were derived from the population growth curves. Effects of ampicillin (32 μg/mL), ceftriaxone (4 μg/mL) and meropenem (4 μg/mL) on each strain and resistance-group also were assessed. Further, in vitro batch cultures were prepared by mixing equal concentrations of 10 representative E. coli strains (two from each resistance gene group), and each mixture was incubated at 37°C for 24 hours in non-antibiotic cation-adjusted Mueller-Hinton II (CAMH-2) broth, ampicillin + CAMH-2 broth (at 2, 4, 8, 16, and 32 μg/mL) and ceftiofur + CAMH-2 broth (at 0.5, 1, 2, 4, and 8μg/mL). Relative and absolute abundance of resistance-groups were estimated phenotypically. Line plots of the raw data were generated, and non-linear Gompertz models and multilevel mixed-effect linear regression models were fitted to the data. The observed strain growth rate distributions were significantly different across the groups. AmpC strains (i.e., blaCMY-2) had distinctly less robust (p &lt; 0.05) growth in ceftriaxone (4 μg/mL) compared to extended-spectrum beta-lactamase (ESBL) producers harboring blaCTX-M-*variants. With increasing beta-lactam antibiotic concentrations, relative proportions of ESBLs and CREs were over-represented in the mixed bacterial communities; importantly, this was more pronounced with ceftiofur than with ampicillin. These results indicate that aminopenicillins and extended-spectrum cephalosporins would be expected to propagate carbapenemase-producing Enterobacteriaceae in food animals if and when Enterobacteriaceae from human health care settings enter the food animal environment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33196662</pmid><doi>10.1371/journal.pone.0242195</doi><tpages>e0242195</tpages><orcidid>https://orcid.org/0000-0002-0538-5961</orcidid><orcidid>https://orcid.org/0000-0001-9207-9999</orcidid><orcidid>https://orcid.org/0000-0002-9216-1308</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-11, Vol.15 (11), p.e0242195-e0242195
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2460992586
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Agricultural research
Amides
Ampicillin
Animal products
Animals
Antibiotics
Antimicrobial agents
Bacteria
Beta lactam antibiotics
beta-Lactam Resistance
beta-Lactamase Inhibitors - pharmacology
beta-Lactamases - genetics
Biology and Life Sciences
Carbapenemase
Carbapenems
Carbapenems - pharmacology
Ceftriaxone
Cephalosporins
Comparative analysis
Dairy cattle
Drug resistance
E coli
Enterobacteriaceae
Enzymes
Escherichia coli
Escherichia coli - drug effects
Escherichia coli - genetics
FDA approval
Food
Food and nutrition
Genes
Gram-negative bacteria
Gram-positive bacteria
Growth curves
Growth rate
Health aspects
Health care
Livestock
Livestock production
Medical research
Medicine and Health Sciences
Meropenem
Microbial drug resistance
Nosocomial infections
Penicillin
Plasmids
Population growth
Preventive medicine
Production processes
Public health
Regression analysis
Regression models
Research and Analysis Methods
Selection, Genetic
Strains (organisms)
Urogenital system
Veterinary antibiotics
β Lactamase
β-Lactam antibiotics
title Can the use of older-generation beta-lactam antibiotics in livestock production over-select for beta-lactamases of greatest consequence for human medicine? An in vitro experimental model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20the%20use%20of%20older-generation%20beta-lactam%20antibiotics%20in%20livestock%20production%20over-select%20for%20beta-lactamases%20of%20greatest%20consequence%20for%20human%20medicine?%20An%20in%20vitro%20experimental%20model&rft.jtitle=PloS%20one&rft.au=Ogunrinu,%20Olanrewaju%20J&rft.date=2020-11-16&rft.volume=15&rft.issue=11&rft.spage=e0242195&rft.epage=e0242195&rft.pages=e0242195-e0242195&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242195&rft_dat=%3Cgale_plos_%3EA641970282%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460992586&rft_id=info:pmid/33196662&rft_galeid=A641970282&rft_doaj_id=oai_doaj_org_article_fcbf77a0b2dd44bab2deaeb33ce851f3&rfr_iscdi=true