Gene expression profiling of Trypanosoma cruzi in the presence of heme points to glycosomal metabolic adaptation of epimastigotes inside the vector
Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi, and is transmitted by triatomine insects during its blood meal. Proliferative epimastigotes forms thrive inside the insects in the presence of heme (...
Gespeichert in:
Veröffentlicht in: | PLoS neglected tropical diseases 2020-01, Vol.14 (1), p.e0007945 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e0007945 |
container_title | PLoS neglected tropical diseases |
container_volume | 14 |
creator | Paes, Marcia C Saraiva, Francis M S Nogueira, Natália P Vieira, Carolina S D Dias, Felipe A Rossini, Ana Coelho, Vitor Lima Pane, Attilio Sang, Fei Alcocer, Marcos |
description | Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi, and is transmitted by triatomine insects during its blood meal. Proliferative epimastigotes forms thrive inside the insects in the presence of heme (iron protoporphyrin IX), an abundant product of blood digestion, however little is known about the metabolic outcome of this signaling molecule in the parasite. Trypanosomatids exhibit unusual gene transcription employing a polycistronic transcription mechanism through trans-splicing that regulates its life cycle. Using the Deep Seq transcriptome sequencing we characterized the heme induced transcriptome of epimastigotes and determined that most of the upregulated genes were related to glucose metabolism inside the glycosomes. These results were supported by the upregulation of glycosomal isoforms of PEPCK and fumarate reductase of heme-treated parasites, implying that the fermentation process was favored. Moreover, the downregulation of mitochondrial gene enzymes in the presence of heme also supported the hypothesis that heme shifts the parasite glycosomal glucose metabolism towards aerobic fermentation. These results are examples of the environmental metabolic plasticity inside the vector supporting ATP production, promoting epimastigotes proliferation and survival. |
doi_str_mv | 10.1371/journal.pntd.0007945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2460983456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a031f72586046129488ec99720f9968</doaj_id><sourcerecordid>2460983456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-bb2f18be622750840666c89f532bf7e836f900c53e60cc901032fcfd93be03b83</originalsourceid><addsrcrecordid>eNp1Ustu1DAUjRCIlsIfILDEegY_YsfeIKEKSqVKbMracpzrjEcZO9ieqsNv8MMkM2nVLljZuve8ZJ-qek_wmrCGfN7GfQpmWI-hdGuMcaNq_qI6J4rxFW0Yf_nkfla9yXmLMVdcktfVGSNScUWb8-rvFQRAcD8myNnHgMYUnR986FF06DYdRhNijjuDbNr_8cgHVDaAZjgECzNoA7tpEH0oGZWI-uFgj4wB7aCYNg7eItOZsZgyG0wMGP3O5OL7WCBPktl3cJS9A1tielu9cmbI8G45L6pf37_dXv5Y3fy8ur78erOynIqyalvqiGxBUNpwLGsshLBSOc5o6xqQTDiFseUMBLZWYYIZddZ1irWAWSvZRfXxpDsOMevlPbOmtcBKspqLCXF9QnTRbPWYptjpoKPx-jiIqdcmFW8H0NxgRlxDuRS4FoSqWkqwSjUUO6XE7PZlcdu3O-gshJLM8Ez0-Sb4je7jnRbTVwk8h_m0CKT4ew-5_CdyfULZFHNO4B4dCNZzcR5Yei6OXooz0T48TfdIemgK-wdDc8Rz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460983456</pqid></control><display><type>article</type><title>Gene expression profiling of Trypanosoma cruzi in the presence of heme points to glycosomal metabolic adaptation of epimastigotes inside the vector</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Paes, Marcia C ; Saraiva, Francis M S ; Nogueira, Natália P ; Vieira, Carolina S D ; Dias, Felipe A ; Rossini, Ana ; Coelho, Vitor Lima ; Pane, Attilio ; Sang, Fei ; Alcocer, Marcos</creator><contributor>Almeida, Igor C.</contributor><creatorcontrib>Paes, Marcia C ; Saraiva, Francis M S ; Nogueira, Natália P ; Vieira, Carolina S D ; Dias, Felipe A ; Rossini, Ana ; Coelho, Vitor Lima ; Pane, Attilio ; Sang, Fei ; Alcocer, Marcos ; Almeida, Igor C.</creatorcontrib><description>Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi, and is transmitted by triatomine insects during its blood meal. Proliferative epimastigotes forms thrive inside the insects in the presence of heme (iron protoporphyrin IX), an abundant product of blood digestion, however little is known about the metabolic outcome of this signaling molecule in the parasite. Trypanosomatids exhibit unusual gene transcription employing a polycistronic transcription mechanism through trans-splicing that regulates its life cycle. Using the Deep Seq transcriptome sequencing we characterized the heme induced transcriptome of epimastigotes and determined that most of the upregulated genes were related to glucose metabolism inside the glycosomes. These results were supported by the upregulation of glycosomal isoforms of PEPCK and fumarate reductase of heme-treated parasites, implying that the fermentation process was favored. Moreover, the downregulation of mitochondrial gene enzymes in the presence of heme also supported the hypothesis that heme shifts the parasite glycosomal glucose metabolism towards aerobic fermentation. These results are examples of the environmental metabolic plasticity inside the vector supporting ATP production, promoting epimastigotes proliferation and survival.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0007945</identifier><identifier>PMID: 31895927</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Amino acids ; Animals ; ATP ; Biology and Life Sciences ; Biosynthesis ; Blood ; Chagas disease ; Chagas Disease - metabolism ; Energy ; Epimastigotes ; Fermentation ; Gene expression ; Gene Expression Profiling ; Genes ; Genes, Mitochondrial ; Genomes ; Glucose ; Glucose - metabolism ; Glycosomes ; Haplotypes ; Heme ; Heme - pharmacology ; Insect Vectors - parasitology ; Insects ; Isoforms ; Kinases ; Life cycle ; Life cycles ; Medicine and Health Sciences ; Metabolism ; Microbodies - metabolism ; Mitochondria ; Mitochondrial DNA ; Parasites ; Parasitic diseases ; Phosphorylation ; Proliferation ; Protoporphyrin ; Protoporphyrin IX ; Protozoa ; Reductases ; RNA polymerase ; Signal Transduction ; Survival ; Transcription ; Transcription, Genetic ; Triatominae - parasitology ; Tropical diseases ; Trypanosoma cruzi ; Trypanosoma cruzi - drug effects ; Trypanosoma cruzi - genetics ; Trypanosoma cruzi - growth & development ; Trypanosoma cruzi - metabolism ; Trypanosomiasis ; Vector-borne diseases</subject><ispartof>PLoS neglected tropical diseases, 2020-01, Vol.14 (1), p.e0007945</ispartof><rights>2020 Paes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Paes et al 2020 Paes et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-bb2f18be622750840666c89f532bf7e836f900c53e60cc901032fcfd93be03b83</citedby><cites>FETCH-LOGICAL-c526t-bb2f18be622750840666c89f532bf7e836f900c53e60cc901032fcfd93be03b83</cites><orcidid>0000-0003-2247-8251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959606/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959606/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31895927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Almeida, Igor C.</contributor><creatorcontrib>Paes, Marcia C</creatorcontrib><creatorcontrib>Saraiva, Francis M S</creatorcontrib><creatorcontrib>Nogueira, Natália P</creatorcontrib><creatorcontrib>Vieira, Carolina S D</creatorcontrib><creatorcontrib>Dias, Felipe A</creatorcontrib><creatorcontrib>Rossini, Ana</creatorcontrib><creatorcontrib>Coelho, Vitor Lima</creatorcontrib><creatorcontrib>Pane, Attilio</creatorcontrib><creatorcontrib>Sang, Fei</creatorcontrib><creatorcontrib>Alcocer, Marcos</creatorcontrib><title>Gene expression profiling of Trypanosoma cruzi in the presence of heme points to glycosomal metabolic adaptation of epimastigotes inside the vector</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi, and is transmitted by triatomine insects during its blood meal. Proliferative epimastigotes forms thrive inside the insects in the presence of heme (iron protoporphyrin IX), an abundant product of blood digestion, however little is known about the metabolic outcome of this signaling molecule in the parasite. Trypanosomatids exhibit unusual gene transcription employing a polycistronic transcription mechanism through trans-splicing that regulates its life cycle. Using the Deep Seq transcriptome sequencing we characterized the heme induced transcriptome of epimastigotes and determined that most of the upregulated genes were related to glucose metabolism inside the glycosomes. These results were supported by the upregulation of glycosomal isoforms of PEPCK and fumarate reductase of heme-treated parasites, implying that the fermentation process was favored. Moreover, the downregulation of mitochondrial gene enzymes in the presence of heme also supported the hypothesis that heme shifts the parasite glycosomal glucose metabolism towards aerobic fermentation. These results are examples of the environmental metabolic plasticity inside the vector supporting ATP production, promoting epimastigotes proliferation and survival.</description><subject>Adaptation</subject><subject>Amino acids</subject><subject>Animals</subject><subject>ATP</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Blood</subject><subject>Chagas disease</subject><subject>Chagas Disease - metabolism</subject><subject>Energy</subject><subject>Epimastigotes</subject><subject>Fermentation</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genes, Mitochondrial</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glycosomes</subject><subject>Haplotypes</subject><subject>Heme</subject><subject>Heme - pharmacology</subject><subject>Insect Vectors - parasitology</subject><subject>Insects</subject><subject>Isoforms</subject><subject>Kinases</subject><subject>Life cycle</subject><subject>Life cycles</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Microbodies - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Phosphorylation</subject><subject>Proliferation</subject><subject>Protoporphyrin</subject><subject>Protoporphyrin IX</subject><subject>Protozoa</subject><subject>Reductases</subject><subject>RNA polymerase</subject><subject>Signal Transduction</subject><subject>Survival</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><subject>Triatominae - parasitology</subject><subject>Tropical diseases</subject><subject>Trypanosoma cruzi</subject><subject>Trypanosoma cruzi - drug effects</subject><subject>Trypanosoma cruzi - genetics</subject><subject>Trypanosoma cruzi - growth & development</subject><subject>Trypanosoma cruzi - metabolism</subject><subject>Trypanosomiasis</subject><subject>Vector-borne diseases</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ustu1DAUjRCIlsIfILDEegY_YsfeIKEKSqVKbMracpzrjEcZO9ieqsNv8MMkM2nVLljZuve8ZJ-qek_wmrCGfN7GfQpmWI-hdGuMcaNq_qI6J4rxFW0Yf_nkfla9yXmLMVdcktfVGSNScUWb8-rvFQRAcD8myNnHgMYUnR986FF06DYdRhNijjuDbNr_8cgHVDaAZjgECzNoA7tpEH0oGZWI-uFgj4wB7aCYNg7eItOZsZgyG0wMGP3O5OL7WCBPktl3cJS9A1tielu9cmbI8G45L6pf37_dXv5Y3fy8ur78erOynIqyalvqiGxBUNpwLGsshLBSOc5o6xqQTDiFseUMBLZWYYIZddZ1irWAWSvZRfXxpDsOMevlPbOmtcBKspqLCXF9QnTRbPWYptjpoKPx-jiIqdcmFW8H0NxgRlxDuRS4FoSqWkqwSjUUO6XE7PZlcdu3O-gshJLM8Ez0-Sb4je7jnRbTVwk8h_m0CKT4ew-5_CdyfULZFHNO4B4dCNZzcR5Yei6OXooz0T48TfdIemgK-wdDc8Rz</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Paes, Marcia C</creator><creator>Saraiva, Francis M S</creator><creator>Nogueira, Natália P</creator><creator>Vieira, Carolina S D</creator><creator>Dias, Felipe A</creator><creator>Rossini, Ana</creator><creator>Coelho, Vitor Lima</creator><creator>Pane, Attilio</creator><creator>Sang, Fei</creator><creator>Alcocer, Marcos</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2247-8251</orcidid></search><sort><creationdate>20200101</creationdate><title>Gene expression profiling of Trypanosoma cruzi in the presence of heme points to glycosomal metabolic adaptation of epimastigotes inside the vector</title><author>Paes, Marcia C ; Saraiva, Francis M S ; Nogueira, Natália P ; Vieira, Carolina S D ; Dias, Felipe A ; Rossini, Ana ; Coelho, Vitor Lima ; Pane, Attilio ; Sang, Fei ; Alcocer, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-bb2f18be622750840666c89f532bf7e836f900c53e60cc901032fcfd93be03b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Amino acids</topic><topic>Animals</topic><topic>ATP</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Blood</topic><topic>Chagas disease</topic><topic>Chagas Disease - metabolism</topic><topic>Energy</topic><topic>Epimastigotes</topic><topic>Fermentation</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genes, Mitochondrial</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glycosomes</topic><topic>Haplotypes</topic><topic>Heme</topic><topic>Heme - pharmacology</topic><topic>Insect Vectors - parasitology</topic><topic>Insects</topic><topic>Isoforms</topic><topic>Kinases</topic><topic>Life cycle</topic><topic>Life cycles</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Microbodies - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Phosphorylation</topic><topic>Proliferation</topic><topic>Protoporphyrin</topic><topic>Protoporphyrin IX</topic><topic>Protozoa</topic><topic>Reductases</topic><topic>RNA polymerase</topic><topic>Signal Transduction</topic><topic>Survival</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><topic>Triatominae - parasitology</topic><topic>Tropical diseases</topic><topic>Trypanosoma cruzi</topic><topic>Trypanosoma cruzi - drug effects</topic><topic>Trypanosoma cruzi - genetics</topic><topic>Trypanosoma cruzi - growth & development</topic><topic>Trypanosoma cruzi - metabolism</topic><topic>Trypanosomiasis</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paes, Marcia C</creatorcontrib><creatorcontrib>Saraiva, Francis M S</creatorcontrib><creatorcontrib>Nogueira, Natália P</creatorcontrib><creatorcontrib>Vieira, Carolina S D</creatorcontrib><creatorcontrib>Dias, Felipe A</creatorcontrib><creatorcontrib>Rossini, Ana</creatorcontrib><creatorcontrib>Coelho, Vitor Lima</creatorcontrib><creatorcontrib>Pane, Attilio</creatorcontrib><creatorcontrib>Sang, Fei</creatorcontrib><creatorcontrib>Alcocer, Marcos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paes, Marcia C</au><au>Saraiva, Francis M S</au><au>Nogueira, Natália P</au><au>Vieira, Carolina S D</au><au>Dias, Felipe A</au><au>Rossini, Ana</au><au>Coelho, Vitor Lima</au><au>Pane, Attilio</au><au>Sang, Fei</au><au>Alcocer, Marcos</au><au>Almeida, Igor C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profiling of Trypanosoma cruzi in the presence of heme points to glycosomal metabolic adaptation of epimastigotes inside the vector</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>e0007945</spage><pages>e0007945-</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi, and is transmitted by triatomine insects during its blood meal. Proliferative epimastigotes forms thrive inside the insects in the presence of heme (iron protoporphyrin IX), an abundant product of blood digestion, however little is known about the metabolic outcome of this signaling molecule in the parasite. Trypanosomatids exhibit unusual gene transcription employing a polycistronic transcription mechanism through trans-splicing that regulates its life cycle. Using the Deep Seq transcriptome sequencing we characterized the heme induced transcriptome of epimastigotes and determined that most of the upregulated genes were related to glucose metabolism inside the glycosomes. These results were supported by the upregulation of glycosomal isoforms of PEPCK and fumarate reductase of heme-treated parasites, implying that the fermentation process was favored. Moreover, the downregulation of mitochondrial gene enzymes in the presence of heme also supported the hypothesis that heme shifts the parasite glycosomal glucose metabolism towards aerobic fermentation. These results are examples of the environmental metabolic plasticity inside the vector supporting ATP production, promoting epimastigotes proliferation and survival.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31895927</pmid><doi>10.1371/journal.pntd.0007945</doi><orcidid>https://orcid.org/0000-0003-2247-8251</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-2735 |
ispartof | PLoS neglected tropical diseases, 2020-01, Vol.14 (1), p.e0007945 |
issn | 1935-2735 1935-2727 1935-2735 |
language | eng |
recordid | cdi_plos_journals_2460983456 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adaptation Amino acids Animals ATP Biology and Life Sciences Biosynthesis Blood Chagas disease Chagas Disease - metabolism Energy Epimastigotes Fermentation Gene expression Gene Expression Profiling Genes Genes, Mitochondrial Genomes Glucose Glucose - metabolism Glycosomes Haplotypes Heme Heme - pharmacology Insect Vectors - parasitology Insects Isoforms Kinases Life cycle Life cycles Medicine and Health Sciences Metabolism Microbodies - metabolism Mitochondria Mitochondrial DNA Parasites Parasitic diseases Phosphorylation Proliferation Protoporphyrin Protoporphyrin IX Protozoa Reductases RNA polymerase Signal Transduction Survival Transcription Transcription, Genetic Triatominae - parasitology Tropical diseases Trypanosoma cruzi Trypanosoma cruzi - drug effects Trypanosoma cruzi - genetics Trypanosoma cruzi - growth & development Trypanosoma cruzi - metabolism Trypanosomiasis Vector-borne diseases |
title | Gene expression profiling of Trypanosoma cruzi in the presence of heme points to glycosomal metabolic adaptation of epimastigotes inside the vector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profiling%20of%20Trypanosoma%20cruzi%20in%20the%20presence%20of%20heme%20points%20to%20glycosomal%20metabolic%20adaptation%20of%20epimastigotes%20inside%20the%20vector&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Paes,%20Marcia%20C&rft.date=2020-01-01&rft.volume=14&rft.issue=1&rft.spage=e0007945&rft.pages=e0007945-&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0007945&rft_dat=%3Cproquest_plos_%3E2460983456%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460983456&rft_id=info:pmid/31895927&rft_doaj_id=oai_doaj_org_article_5a031f72586046129488ec99720f9968&rfr_iscdi=true |