Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum
All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model f...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2020-10, Vol.16 (10), p.e1009007 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e1009007 |
container_title | PLoS pathogens |
container_volume | 16 |
creator | Blake, Thomas C A Haase, Silvia Baum, Jake |
description | All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis. |
doi_str_mv | 10.1371/journal.ppat.1009007 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460983298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645331626</galeid><doaj_id>oai_doaj_org_article_37881a8caa204bf5bf36ff08583eb643</doaj_id><sourcerecordid>A645331626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-7db5ece354c6571221ef86689771f5960693badd3b5ec92b4cf8b7f9427c20b83</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBY6onDLnbs2MkFaVXxsVIFiI-zNXbGW1dJvNhJxf57vN206kpwQD7Ynnnm9cx4iuIlo0vGFXt7HaY4QLfcbmFcMkobStWj4pRVFV8orsTjB-eT4llK15QKxpl8WpxwzqhQVXNa9Cs7hn4Xkh-IC9FiIjC0ZLxCggPGDY7eJhIcidgS04XQEotdR_xwA8mHgZjdLdxDB9ED2ULM9hHJ1w5SH1o_9cRBZ312TP3z4km-JHwx72fFzw_vf1x8Wlx--bi-WF0urJRsXKjWVGiRV8LKSrGyZOhqKetGKeaqRlLZcANty_dYUxphXW2Ua0SpbElNzc-K1wfdbReSnjuVdCkkbWpeNntifSDaANd6G30PcacDeH1rCHGjIebaO9Rc1TWD2gKUVBhXGcelc7Suao5GCp613s2vTabH1uIwRuiORI89g7_Sm3CjlRSCNiwLnM8CMfyaMI3_SHmmNpCz8oMLWcz2Plm9kqLKfypLmanlX6i8Wuy9DQM6n-1HAW-OAjIz4u9xA1NKev3923-wn49ZcWBtDClFdPcNYVTvJ_iuSL2fYD1PcA579bCZ90F3I8v_APr47UA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460983298</pqid></control><display><type>article</type><title>Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum</title><source>Open Access: PubMed Central</source><source>PLoS</source><source>MEDLINE</source><source>EZB Free E-Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><creator>Blake, Thomas C A ; Haase, Silvia ; Baum, Jake</creator><creatorcontrib>Blake, Thomas C A ; Haase, Silvia ; Baum, Jake</creatorcontrib><description>All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009007</identifier><identifier>PMID: 33104759</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Actin Cytoskeleton - metabolism ; Actomyosin ; Actomyosin - metabolism ; Actomyosin - physiology ; Animals ; Biology and Life Sciences ; Blood ; Conditional mutant ; Defects ; Development and progression ; Developmental stages ; Egress ; Erythrocytes ; Erythrocytes - metabolism ; Erythrocytes - parasitology ; Erythrocytes - physiology ; Filaments ; Health aspects ; Humans ; Life sciences ; Malaria ; Malaria - metabolism ; Malaria - physiopathology ; Malaria, Falciparum - parasitology ; Merozoites - metabolism ; Microscopy ; Motility ; Mutagenesis ; Mutation ; Myosin ; Myosins - metabolism ; Nonmuscle Myosin Type IIA - metabolism ; Nonmuscle Myosin Type IIA - physiology ; Parasites ; Parasites - metabolism ; Parasitism ; Pathogenesis ; Phosphorylation ; Physical Sciences ; Physiological aspects ; Plasmids ; Plasmodium falciparum ; Plasmodium falciparum - metabolism ; Plasmodium falciparum - pathogenicity ; Protozoa ; Protozoan Proteins - metabolism ; Red blood cells ; Research and Analysis Methods ; Signs and symptoms ; Vector-borne diseases</subject><ispartof>PLoS pathogens, 2020-10, Vol.16 (10), p.e1009007</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Blake et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Blake et al 2020 Blake et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-7db5ece354c6571221ef86689771f5960693badd3b5ec92b4cf8b7f9427c20b83</citedby><cites>FETCH-LOGICAL-c661t-7db5ece354c6571221ef86689771f5960693badd3b5ec92b4cf8b7f9427c20b83</cites><orcidid>0000-0003-0870-3715 ; 0000-0002-8534-0025 ; 0000-0002-0275-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644091/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644091/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33104759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blake, Thomas C A</creatorcontrib><creatorcontrib>Haase, Silvia</creatorcontrib><creatorcontrib>Baum, Jake</creatorcontrib><title>Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.</description><subject>Actin</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actomyosin</subject><subject>Actomyosin - metabolism</subject><subject>Actomyosin - physiology</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Conditional mutant</subject><subject>Defects</subject><subject>Development and progression</subject><subject>Developmental stages</subject><subject>Egress</subject><subject>Erythrocytes</subject><subject>Erythrocytes - metabolism</subject><subject>Erythrocytes - parasitology</subject><subject>Erythrocytes - physiology</subject><subject>Filaments</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Life sciences</subject><subject>Malaria</subject><subject>Malaria - metabolism</subject><subject>Malaria - physiopathology</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Merozoites - metabolism</subject><subject>Microscopy</subject><subject>Motility</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Nonmuscle Myosin Type IIA - metabolism</subject><subject>Nonmuscle Myosin Type IIA - physiology</subject><subject>Parasites</subject><subject>Parasites - metabolism</subject><subject>Parasitism</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Protozoa</subject><subject>Protozoan Proteins - metabolism</subject><subject>Red blood cells</subject><subject>Research and Analysis Methods</subject><subject>Signs and symptoms</subject><subject>Vector-borne diseases</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBY6onDLnbs2MkFaVXxsVIFiI-zNXbGW1dJvNhJxf57vN206kpwQD7Ynnnm9cx4iuIlo0vGFXt7HaY4QLfcbmFcMkobStWj4pRVFV8orsTjB-eT4llK15QKxpl8WpxwzqhQVXNa9Cs7hn4Xkh-IC9FiIjC0ZLxCggPGDY7eJhIcidgS04XQEotdR_xwA8mHgZjdLdxDB9ED2ULM9hHJ1w5SH1o_9cRBZ312TP3z4km-JHwx72fFzw_vf1x8Wlx--bi-WF0urJRsXKjWVGiRV8LKSrGyZOhqKetGKeaqRlLZcANty_dYUxphXW2Ua0SpbElNzc-K1wfdbReSnjuVdCkkbWpeNntifSDaANd6G30PcacDeH1rCHGjIebaO9Rc1TWD2gKUVBhXGcelc7Suao5GCp613s2vTabH1uIwRuiORI89g7_Sm3CjlRSCNiwLnM8CMfyaMI3_SHmmNpCz8oMLWcz2Plm9kqLKfypLmanlX6i8Wuy9DQM6n-1HAW-OAjIz4u9xA1NKev3923-wn49ZcWBtDClFdPcNYVTvJ_iuSL2fYD1PcA579bCZ90F3I8v_APr47UA</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Blake, Thomas C A</creator><creator>Haase, Silvia</creator><creator>Baum, Jake</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0870-3715</orcidid><orcidid>https://orcid.org/0000-0002-8534-0025</orcidid><orcidid>https://orcid.org/0000-0002-0275-352X</orcidid></search><sort><creationdate>20201026</creationdate><title>Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum</title><author>Blake, Thomas C A ; Haase, Silvia ; Baum, Jake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-7db5ece354c6571221ef86689771f5960693badd3b5ec92b4cf8b7f9427c20b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actomyosin</topic><topic>Actomyosin - metabolism</topic><topic>Actomyosin - physiology</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Conditional mutant</topic><topic>Defects</topic><topic>Development and progression</topic><topic>Developmental stages</topic><topic>Egress</topic><topic>Erythrocytes</topic><topic>Erythrocytes - metabolism</topic><topic>Erythrocytes - parasitology</topic><topic>Erythrocytes - physiology</topic><topic>Filaments</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Life sciences</topic><topic>Malaria</topic><topic>Malaria - metabolism</topic><topic>Malaria - physiopathology</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Merozoites - metabolism</topic><topic>Microscopy</topic><topic>Motility</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Nonmuscle Myosin Type IIA - metabolism</topic><topic>Nonmuscle Myosin Type IIA - physiology</topic><topic>Parasites</topic><topic>Parasites - metabolism</topic><topic>Parasitism</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Protozoa</topic><topic>Protozoan Proteins - metabolism</topic><topic>Red blood cells</topic><topic>Research and Analysis Methods</topic><topic>Signs and symptoms</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blake, Thomas C A</creatorcontrib><creatorcontrib>Haase, Silvia</creatorcontrib><creatorcontrib>Baum, Jake</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blake, Thomas C A</au><au>Haase, Silvia</au><au>Baum, Jake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-10-26</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>e1009007</spage><pages>e1009007-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33104759</pmid><doi>10.1371/journal.ppat.1009007</doi><orcidid>https://orcid.org/0000-0003-0870-3715</orcidid><orcidid>https://orcid.org/0000-0002-8534-0025</orcidid><orcidid>https://orcid.org/0000-0002-0275-352X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2020-10, Vol.16 (10), p.e1009007 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2460983298 |
source | Open Access: PubMed Central; PLoS; MEDLINE; EZB Free E-Journals; DOAJ Directory of Open Access Journals; PubMed Central Open Access |
subjects | Actin Actin Cytoskeleton - metabolism Actomyosin Actomyosin - metabolism Actomyosin - physiology Animals Biology and Life Sciences Blood Conditional mutant Defects Development and progression Developmental stages Egress Erythrocytes Erythrocytes - metabolism Erythrocytes - parasitology Erythrocytes - physiology Filaments Health aspects Humans Life sciences Malaria Malaria - metabolism Malaria - physiopathology Malaria, Falciparum - parasitology Merozoites - metabolism Microscopy Motility Mutagenesis Mutation Myosin Myosins - metabolism Nonmuscle Myosin Type IIA - metabolism Nonmuscle Myosin Type IIA - physiology Parasites Parasites - metabolism Parasitism Pathogenesis Phosphorylation Physical Sciences Physiological aspects Plasmids Plasmodium falciparum Plasmodium falciparum - metabolism Plasmodium falciparum - pathogenicity Protozoa Protozoan Proteins - metabolism Red blood cells Research and Analysis Methods Signs and symptoms Vector-borne diseases |
title | Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actomyosin%20forces%20and%20the%20energetics%20of%20red%20blood%20cell%20invasion%20by%20the%20malaria%20parasite%20Plasmodium%20falciparum&rft.jtitle=PLoS%20pathogens&rft.au=Blake,%20Thomas%20C%20A&rft.date=2020-10-26&rft.volume=16&rft.issue=10&rft.spage=e1009007&rft.pages=e1009007-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009007&rft_dat=%3Cgale_plos_%3EA645331626%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460983298&rft_id=info:pmid/33104759&rft_galeid=A645331626&rft_doaj_id=oai_doaj_org_article_37881a8caa204bf5bf36ff08583eb643&rfr_iscdi=true |