Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum

All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2020-10, Vol.16 (10), p.e1009007
Hauptverfasser: Blake, Thomas C A, Haase, Silvia, Baum, Jake
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e1009007
container_title PLoS pathogens
container_volume 16
creator Blake, Thomas C A
Haase, Silvia
Baum, Jake
description All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.
doi_str_mv 10.1371/journal.ppat.1009007
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460983298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645331626</galeid><doaj_id>oai_doaj_org_article_37881a8caa204bf5bf36ff08583eb643</doaj_id><sourcerecordid>A645331626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-7db5ece354c6571221ef86689771f5960693badd3b5ec92b4cf8b7f9427c20b83</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBY6onDLnbs2MkFaVXxsVIFiI-zNXbGW1dJvNhJxf57vN206kpwQD7Ynnnm9cx4iuIlo0vGFXt7HaY4QLfcbmFcMkobStWj4pRVFV8orsTjB-eT4llK15QKxpl8WpxwzqhQVXNa9Cs7hn4Xkh-IC9FiIjC0ZLxCggPGDY7eJhIcidgS04XQEotdR_xwA8mHgZjdLdxDB9ED2ULM9hHJ1w5SH1o_9cRBZ312TP3z4km-JHwx72fFzw_vf1x8Wlx--bi-WF0urJRsXKjWVGiRV8LKSrGyZOhqKetGKeaqRlLZcANty_dYUxphXW2Ua0SpbElNzc-K1wfdbReSnjuVdCkkbWpeNntifSDaANd6G30PcacDeH1rCHGjIebaO9Rc1TWD2gKUVBhXGcelc7Suao5GCp613s2vTabH1uIwRuiORI89g7_Sm3CjlRSCNiwLnM8CMfyaMI3_SHmmNpCz8oMLWcz2Plm9kqLKfypLmanlX6i8Wuy9DQM6n-1HAW-OAjIz4u9xA1NKev3923-wn49ZcWBtDClFdPcNYVTvJ_iuSL2fYD1PcA579bCZ90F3I8v_APr47UA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460983298</pqid></control><display><type>article</type><title>Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum</title><source>Open Access: PubMed Central</source><source>PLoS</source><source>MEDLINE</source><source>EZB Free E-Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><creator>Blake, Thomas C A ; Haase, Silvia ; Baum, Jake</creator><creatorcontrib>Blake, Thomas C A ; Haase, Silvia ; Baum, Jake</creatorcontrib><description>All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009007</identifier><identifier>PMID: 33104759</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Actin Cytoskeleton - metabolism ; Actomyosin ; Actomyosin - metabolism ; Actomyosin - physiology ; Animals ; Biology and Life Sciences ; Blood ; Conditional mutant ; Defects ; Development and progression ; Developmental stages ; Egress ; Erythrocytes ; Erythrocytes - metabolism ; Erythrocytes - parasitology ; Erythrocytes - physiology ; Filaments ; Health aspects ; Humans ; Life sciences ; Malaria ; Malaria - metabolism ; Malaria - physiopathology ; Malaria, Falciparum - parasitology ; Merozoites - metabolism ; Microscopy ; Motility ; Mutagenesis ; Mutation ; Myosin ; Myosins - metabolism ; Nonmuscle Myosin Type IIA - metabolism ; Nonmuscle Myosin Type IIA - physiology ; Parasites ; Parasites - metabolism ; Parasitism ; Pathogenesis ; Phosphorylation ; Physical Sciences ; Physiological aspects ; Plasmids ; Plasmodium falciparum ; Plasmodium falciparum - metabolism ; Plasmodium falciparum - pathogenicity ; Protozoa ; Protozoan Proteins - metabolism ; Red blood cells ; Research and Analysis Methods ; Signs and symptoms ; Vector-borne diseases</subject><ispartof>PLoS pathogens, 2020-10, Vol.16 (10), p.e1009007</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Blake et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Blake et al 2020 Blake et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-7db5ece354c6571221ef86689771f5960693badd3b5ec92b4cf8b7f9427c20b83</citedby><cites>FETCH-LOGICAL-c661t-7db5ece354c6571221ef86689771f5960693badd3b5ec92b4cf8b7f9427c20b83</cites><orcidid>0000-0003-0870-3715 ; 0000-0002-8534-0025 ; 0000-0002-0275-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644091/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644091/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33104759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blake, Thomas C A</creatorcontrib><creatorcontrib>Haase, Silvia</creatorcontrib><creatorcontrib>Baum, Jake</creatorcontrib><title>Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.</description><subject>Actin</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actomyosin</subject><subject>Actomyosin - metabolism</subject><subject>Actomyosin - physiology</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Conditional mutant</subject><subject>Defects</subject><subject>Development and progression</subject><subject>Developmental stages</subject><subject>Egress</subject><subject>Erythrocytes</subject><subject>Erythrocytes - metabolism</subject><subject>Erythrocytes - parasitology</subject><subject>Erythrocytes - physiology</subject><subject>Filaments</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Life sciences</subject><subject>Malaria</subject><subject>Malaria - metabolism</subject><subject>Malaria - physiopathology</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Merozoites - metabolism</subject><subject>Microscopy</subject><subject>Motility</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Nonmuscle Myosin Type IIA - metabolism</subject><subject>Nonmuscle Myosin Type IIA - physiology</subject><subject>Parasites</subject><subject>Parasites - metabolism</subject><subject>Parasitism</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Protozoa</subject><subject>Protozoan Proteins - metabolism</subject><subject>Red blood cells</subject><subject>Research and Analysis Methods</subject><subject>Signs and symptoms</subject><subject>Vector-borne diseases</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBY6onDLnbs2MkFaVXxsVIFiI-zNXbGW1dJvNhJxf57vN206kpwQD7Ynnnm9cx4iuIlo0vGFXt7HaY4QLfcbmFcMkobStWj4pRVFV8orsTjB-eT4llK15QKxpl8WpxwzqhQVXNa9Cs7hn4Xkh-IC9FiIjC0ZLxCggPGDY7eJhIcidgS04XQEotdR_xwA8mHgZjdLdxDB9ED2ULM9hHJ1w5SH1o_9cRBZ312TP3z4km-JHwx72fFzw_vf1x8Wlx--bi-WF0urJRsXKjWVGiRV8LKSrGyZOhqKetGKeaqRlLZcANty_dYUxphXW2Ua0SpbElNzc-K1wfdbReSnjuVdCkkbWpeNntifSDaANd6G30PcacDeH1rCHGjIebaO9Rc1TWD2gKUVBhXGcelc7Suao5GCp613s2vTabH1uIwRuiORI89g7_Sm3CjlRSCNiwLnM8CMfyaMI3_SHmmNpCz8oMLWcz2Plm9kqLKfypLmanlX6i8Wuy9DQM6n-1HAW-OAjIz4u9xA1NKev3923-wn49ZcWBtDClFdPcNYVTvJ_iuSL2fYD1PcA579bCZ90F3I8v_APr47UA</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Blake, Thomas C A</creator><creator>Haase, Silvia</creator><creator>Baum, Jake</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0870-3715</orcidid><orcidid>https://orcid.org/0000-0002-8534-0025</orcidid><orcidid>https://orcid.org/0000-0002-0275-352X</orcidid></search><sort><creationdate>20201026</creationdate><title>Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum</title><author>Blake, Thomas C A ; Haase, Silvia ; Baum, Jake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-7db5ece354c6571221ef86689771f5960693badd3b5ec92b4cf8b7f9427c20b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actomyosin</topic><topic>Actomyosin - metabolism</topic><topic>Actomyosin - physiology</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Conditional mutant</topic><topic>Defects</topic><topic>Development and progression</topic><topic>Developmental stages</topic><topic>Egress</topic><topic>Erythrocytes</topic><topic>Erythrocytes - metabolism</topic><topic>Erythrocytes - parasitology</topic><topic>Erythrocytes - physiology</topic><topic>Filaments</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Life sciences</topic><topic>Malaria</topic><topic>Malaria - metabolism</topic><topic>Malaria - physiopathology</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Merozoites - metabolism</topic><topic>Microscopy</topic><topic>Motility</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Nonmuscle Myosin Type IIA - metabolism</topic><topic>Nonmuscle Myosin Type IIA - physiology</topic><topic>Parasites</topic><topic>Parasites - metabolism</topic><topic>Parasitism</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Protozoa</topic><topic>Protozoan Proteins - metabolism</topic><topic>Red blood cells</topic><topic>Research and Analysis Methods</topic><topic>Signs and symptoms</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blake, Thomas C A</creatorcontrib><creatorcontrib>Haase, Silvia</creatorcontrib><creatorcontrib>Baum, Jake</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blake, Thomas C A</au><au>Haase, Silvia</au><au>Baum, Jake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-10-26</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>e1009007</spage><pages>e1009007-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33104759</pmid><doi>10.1371/journal.ppat.1009007</doi><orcidid>https://orcid.org/0000-0003-0870-3715</orcidid><orcidid>https://orcid.org/0000-0002-8534-0025</orcidid><orcidid>https://orcid.org/0000-0002-0275-352X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2020-10, Vol.16 (10), p.e1009007
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2460983298
source Open Access: PubMed Central; PLoS; MEDLINE; EZB Free E-Journals; DOAJ Directory of Open Access Journals; PubMed Central Open Access
subjects Actin
Actin Cytoskeleton - metabolism
Actomyosin
Actomyosin - metabolism
Actomyosin - physiology
Animals
Biology and Life Sciences
Blood
Conditional mutant
Defects
Development and progression
Developmental stages
Egress
Erythrocytes
Erythrocytes - metabolism
Erythrocytes - parasitology
Erythrocytes - physiology
Filaments
Health aspects
Humans
Life sciences
Malaria
Malaria - metabolism
Malaria - physiopathology
Malaria, Falciparum - parasitology
Merozoites - metabolism
Microscopy
Motility
Mutagenesis
Mutation
Myosin
Myosins - metabolism
Nonmuscle Myosin Type IIA - metabolism
Nonmuscle Myosin Type IIA - physiology
Parasites
Parasites - metabolism
Parasitism
Pathogenesis
Phosphorylation
Physical Sciences
Physiological aspects
Plasmids
Plasmodium falciparum
Plasmodium falciparum - metabolism
Plasmodium falciparum - pathogenicity
Protozoa
Protozoan Proteins - metabolism
Red blood cells
Research and Analysis Methods
Signs and symptoms
Vector-borne diseases
title Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actomyosin%20forces%20and%20the%20energetics%20of%20red%20blood%20cell%20invasion%20by%20the%20malaria%20parasite%20Plasmodium%20falciparum&rft.jtitle=PLoS%20pathogens&rft.au=Blake,%20Thomas%20C%20A&rft.date=2020-10-26&rft.volume=16&rft.issue=10&rft.spage=e1009007&rft.pages=e1009007-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009007&rft_dat=%3Cgale_plos_%3EA645331626%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460983298&rft_id=info:pmid/33104759&rft_galeid=A645331626&rft_doaj_id=oai_doaj_org_article_37881a8caa204bf5bf36ff08583eb643&rfr_iscdi=true