SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response

As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2020-05, Vol.16 (5), p.e1008188-e1008188
Hauptverfasser: Li, Qinghe, Wang, Fei, Wang, Qiao, Zhang, Na, Zheng, Jumei, Zheng, Maiqing, Liu, Ranran, Cui, Huanxian, Wen, Jie, Zhao, Guiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008188
container_issue 5
container_start_page e1008188
container_title PLoS pathogens
container_volume 16
creator Li, Qinghe
Wang, Fei
Wang, Qiao
Zhang, Na
Zheng, Jumei
Zheng, Maiqing
Liu, Ranran
Cui, Huanxian
Wen, Jie
Zhao, Guiping
description As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin 3-based ubiquitin ligase adaptor Speckle-type BTB-POZ protein (chSPOP) recognizes the intermediate domain of chicken MyD88 (chMyD88) and degrades it through the proteasome pathway. Knockdown or genetic ablation of chSPOP leads to aberrant elevation of chMyD88 protein. Through this interaction, chSPOP negatively regulates NF-κB pathway activity and thus the production of IL-1β upon LPS challenge in chicken macrophages. Furthermore, Spop-deficient mice are more susceptible to infection with Salmonella typhimurium. Collectively, these findings demonstrate MyD88 as a bona fide substrate of SPOP and uncover a mechanism by which SPOP regulates MyD88 abundance and disease susceptibility.
doi_str_mv 10.1371/journal.ppat.1008188
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460980510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627433465</galeid><doaj_id>oai_doaj_org_article_89f6193cb5ec4deeb053d7e861a95f0b</doaj_id><sourcerecordid>A627433465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-14f88bc0dff5796fca19eb4a69115c1cbca327c15c603195dfcc114586290bf53</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I84FqSpfKxVaUbghWY4z3nqV2KntIPrv8bJp1UW9IB_GHj_va89oiuI5RktMavx246fgVL8cR5WWGCGBhXhQHGLGyKImNX14Z39QPIlxgxDFBPPHxQGpCGdIoMPi58X52Xk5Bj_4BLGcWns12WSdSta7Urmu7GAdVLc7e1N-uX4vRJl8GadxDBBjmS6htC4rchiGyUGZ06N3EZ4Wj4zqIzyb41Hx4-OH7yefF6dnn1Ynx6cLzTlOC0yNEK1GnTGsbrjRCjfQUsUbjJnGutWKVLXOe44IblhntMaYMsGrBrWGkaPi5c537H2Uc2OirChHjUAMo0ysdkTn1UaOwQ4qXEuvrPyb8GEtVUhW9yBFYzhuiG4ZaNoBtIiRrgbBsWqYQW32eje_NrUDdBpcCqrfM92_cfZSrv0vWVcVZbzOBq9ng-CvJohJDjZq6HvlwE_536TJpSGOtv9-9Q96f3UztVa5AOuMz-_qrak85lVNCaF826XlPVReHQxWewfG5vye4M2eIDMJfqe1mmKUq4tv_8F-3WfpjtXBxxjA3PYOI7md7Zsi5Xa25TzbWfbibt9vRTfDTP4A45_1Ag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460980510</pqid></control><display><type>article</type><title>SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response</title><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Qinghe ; Wang, Fei ; Wang, Qiao ; Zhang, Na ; Zheng, Jumei ; Zheng, Maiqing ; Liu, Ranran ; Cui, Huanxian ; Wen, Jie ; Zhao, Guiping</creator><contributor>Luo, Zhao-Qing</contributor><creatorcontrib>Li, Qinghe ; Wang, Fei ; Wang, Qiao ; Zhang, Na ; Zheng, Jumei ; Zheng, Maiqing ; Liu, Ranran ; Cui, Huanxian ; Wen, Jie ; Zhao, Guiping ; Luo, Zhao-Qing</creatorcontrib><description>As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin 3-based ubiquitin ligase adaptor Speckle-type BTB-POZ protein (chSPOP) recognizes the intermediate domain of chicken MyD88 (chMyD88) and degrades it through the proteasome pathway. Knockdown or genetic ablation of chSPOP leads to aberrant elevation of chMyD88 protein. Through this interaction, chSPOP negatively regulates NF-κB pathway activity and thus the production of IL-1β upon LPS challenge in chicken macrophages. Furthermore, Spop-deficient mice are more susceptible to infection with Salmonella typhimurium. Collectively, these findings demonstrate MyD88 as a bona fide substrate of SPOP and uncover a mechanism by which SPOP regulates MyD88 abundance and disease susceptibility.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008188</identifier><identifier>PMID: 32365080</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Animal sciences ; Antibodies ; Autoimmune diseases ; Biology and Life Sciences ; Chickens ; Cullin ; Cytokines ; Funding ; Health aspects ; Host-parasite relationships ; IL-1β ; Immune response ; Immune system ; Infections ; Innate immunity ; Kinases ; Laboratories ; Lipopolysaccharides ; Macrophages ; Medicine and Health Sciences ; Microorganisms ; Mutation ; MyD88 protein ; NF-κB protein ; Nutrition ; Observations ; Pathogens ; Phosphatase ; Phosphorylation ; Poultry ; Proteasomes ; Proteins ; Regulation ; Research and Analysis Methods ; Salmonella ; Substrates ; Toll-like receptors ; Ubiquitin ; Ubiquitin-protein ligase ; Ubiquitination</subject><ispartof>PLoS pathogens, 2020-05, Vol.16 (5), p.e1008188-e1008188</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Li et al 2020 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-14f88bc0dff5796fca19eb4a69115c1cbca327c15c603195dfcc114586290bf53</citedby><cites>FETCH-LOGICAL-c661t-14f88bc0dff5796fca19eb4a69115c1cbca327c15c603195dfcc114586290bf53</cites><orcidid>0000-0002-9698-829X ; 0000-0003-1332-3952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224567/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32365080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Luo, Zhao-Qing</contributor><creatorcontrib>Li, Qinghe</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Zheng, Jumei</creatorcontrib><creatorcontrib>Zheng, Maiqing</creatorcontrib><creatorcontrib>Liu, Ranran</creatorcontrib><creatorcontrib>Cui, Huanxian</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><creatorcontrib>Zhao, Guiping</creatorcontrib><title>SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin 3-based ubiquitin ligase adaptor Speckle-type BTB-POZ protein (chSPOP) recognizes the intermediate domain of chicken MyD88 (chMyD88) and degrades it through the proteasome pathway. Knockdown or genetic ablation of chSPOP leads to aberrant elevation of chMyD88 protein. Through this interaction, chSPOP negatively regulates NF-κB pathway activity and thus the production of IL-1β upon LPS challenge in chicken macrophages. Furthermore, Spop-deficient mice are more susceptible to infection with Salmonella typhimurium. Collectively, these findings demonstrate MyD88 as a bona fide substrate of SPOP and uncover a mechanism by which SPOP regulates MyD88 abundance and disease susceptibility.</description><subject>Ablation</subject><subject>Animal sciences</subject><subject>Antibodies</subject><subject>Autoimmune diseases</subject><subject>Biology and Life Sciences</subject><subject>Chickens</subject><subject>Cullin</subject><subject>Cytokines</subject><subject>Funding</subject><subject>Health aspects</subject><subject>Host-parasite relationships</subject><subject>IL-1β</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Infections</subject><subject>Innate immunity</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Lipopolysaccharides</subject><subject>Macrophages</subject><subject>Medicine and Health Sciences</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>MyD88 protein</subject><subject>NF-κB protein</subject><subject>Nutrition</subject><subject>Observations</subject><subject>Pathogens</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Poultry</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Regulation</subject><subject>Research and Analysis Methods</subject><subject>Salmonella</subject><subject>Substrates</subject><subject>Toll-like receptors</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitination</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I84FqSpfKxVaUbghWY4z3nqV2KntIPrv8bJp1UW9IB_GHj_va89oiuI5RktMavx246fgVL8cR5WWGCGBhXhQHGLGyKImNX14Z39QPIlxgxDFBPPHxQGpCGdIoMPi58X52Xk5Bj_4BLGcWns12WSdSta7Urmu7GAdVLc7e1N-uX4vRJl8GadxDBBjmS6htC4rchiGyUGZ06N3EZ4Wj4zqIzyb41Hx4-OH7yefF6dnn1Ynx6cLzTlOC0yNEK1GnTGsbrjRCjfQUsUbjJnGutWKVLXOe44IblhntMaYMsGrBrWGkaPi5c537H2Uc2OirChHjUAMo0ysdkTn1UaOwQ4qXEuvrPyb8GEtVUhW9yBFYzhuiG4ZaNoBtIiRrgbBsWqYQW32eje_NrUDdBpcCqrfM92_cfZSrv0vWVcVZbzOBq9ng-CvJohJDjZq6HvlwE_536TJpSGOtv9-9Q96f3UztVa5AOuMz-_qrak85lVNCaF826XlPVReHQxWewfG5vye4M2eIDMJfqe1mmKUq4tv_8F-3WfpjtXBxxjA3PYOI7md7Zsi5Xa25TzbWfbibt9vRTfDTP4A45_1Ag</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Li, Qinghe</creator><creator>Wang, Fei</creator><creator>Wang, Qiao</creator><creator>Zhang, Na</creator><creator>Zheng, Jumei</creator><creator>Zheng, Maiqing</creator><creator>Liu, Ranran</creator><creator>Cui, Huanxian</creator><creator>Wen, Jie</creator><creator>Zhao, Guiping</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9698-829X</orcidid><orcidid>https://orcid.org/0000-0003-1332-3952</orcidid></search><sort><creationdate>20200501</creationdate><title>SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response</title><author>Li, Qinghe ; Wang, Fei ; Wang, Qiao ; Zhang, Na ; Zheng, Jumei ; Zheng, Maiqing ; Liu, Ranran ; Cui, Huanxian ; Wen, Jie ; Zhao, Guiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-14f88bc0dff5796fca19eb4a69115c1cbca327c15c603195dfcc114586290bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Animal sciences</topic><topic>Antibodies</topic><topic>Autoimmune diseases</topic><topic>Biology and Life Sciences</topic><topic>Chickens</topic><topic>Cullin</topic><topic>Cytokines</topic><topic>Funding</topic><topic>Health aspects</topic><topic>Host-parasite relationships</topic><topic>IL-1β</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Infections</topic><topic>Innate immunity</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Lipopolysaccharides</topic><topic>Macrophages</topic><topic>Medicine and Health Sciences</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>MyD88 protein</topic><topic>NF-κB protein</topic><topic>Nutrition</topic><topic>Observations</topic><topic>Pathogens</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Poultry</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Regulation</topic><topic>Research and Analysis Methods</topic><topic>Salmonella</topic><topic>Substrates</topic><topic>Toll-like receptors</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qinghe</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Zheng, Jumei</creatorcontrib><creatorcontrib>Zheng, Maiqing</creatorcontrib><creatorcontrib>Liu, Ranran</creatorcontrib><creatorcontrib>Cui, Huanxian</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><creatorcontrib>Zhao, Guiping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qinghe</au><au>Wang, Fei</au><au>Wang, Qiao</au><au>Zhang, Na</au><au>Zheng, Jumei</au><au>Zheng, Maiqing</au><au>Liu, Ranran</au><au>Cui, Huanxian</au><au>Wen, Jie</au><au>Zhao, Guiping</au><au>Luo, Zhao-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>e1008188</spage><epage>e1008188</epage><pages>e1008188-e1008188</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin 3-based ubiquitin ligase adaptor Speckle-type BTB-POZ protein (chSPOP) recognizes the intermediate domain of chicken MyD88 (chMyD88) and degrades it through the proteasome pathway. Knockdown or genetic ablation of chSPOP leads to aberrant elevation of chMyD88 protein. Through this interaction, chSPOP negatively regulates NF-κB pathway activity and thus the production of IL-1β upon LPS challenge in chicken macrophages. Furthermore, Spop-deficient mice are more susceptible to infection with Salmonella typhimurium. Collectively, these findings demonstrate MyD88 as a bona fide substrate of SPOP and uncover a mechanism by which SPOP regulates MyD88 abundance and disease susceptibility.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32365080</pmid><doi>10.1371/journal.ppat.1008188</doi><orcidid>https://orcid.org/0000-0002-9698-829X</orcidid><orcidid>https://orcid.org/0000-0003-1332-3952</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2020-05, Vol.16 (5), p.e1008188-e1008188
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2460980510
source PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Ablation
Animal sciences
Antibodies
Autoimmune diseases
Biology and Life Sciences
Chickens
Cullin
Cytokines
Funding
Health aspects
Host-parasite relationships
IL-1β
Immune response
Immune system
Infections
Innate immunity
Kinases
Laboratories
Lipopolysaccharides
Macrophages
Medicine and Health Sciences
Microorganisms
Mutation
MyD88 protein
NF-κB protein
Nutrition
Observations
Pathogens
Phosphatase
Phosphorylation
Poultry
Proteasomes
Proteins
Regulation
Research and Analysis Methods
Salmonella
Substrates
Toll-like receptors
Ubiquitin
Ubiquitin-protein ligase
Ubiquitination
title SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPOP%20promotes%20ubiquitination%20and%20degradation%20of%20MyD88%20to%20suppress%20the%20innate%20immune%20response&rft.jtitle=PLoS%20pathogens&rft.au=Li,%20Qinghe&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=e1008188&rft.epage=e1008188&rft.pages=e1008188-e1008188&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008188&rft_dat=%3Cgale_plos_%3EA627433465%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460980510&rft_id=info:pmid/32365080&rft_galeid=A627433465&rft_doaj_id=oai_doaj_org_article_89f6193cb5ec4deeb053d7e861a95f0b&rfr_iscdi=true