SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response
As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2020-05, Vol.16 (5), p.e1008188-e1008188 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008188 |
---|---|
container_issue | 5 |
container_start_page | e1008188 |
container_title | PLoS pathogens |
container_volume | 16 |
creator | Li, Qinghe Wang, Fei Wang, Qiao Zhang, Na Zheng, Jumei Zheng, Maiqing Liu, Ranran Cui, Huanxian Wen, Jie Zhao, Guiping |
description | As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin 3-based ubiquitin ligase adaptor Speckle-type BTB-POZ protein (chSPOP) recognizes the intermediate domain of chicken MyD88 (chMyD88) and degrades it through the proteasome pathway. Knockdown or genetic ablation of chSPOP leads to aberrant elevation of chMyD88 protein. Through this interaction, chSPOP negatively regulates NF-κB pathway activity and thus the production of IL-1β upon LPS challenge in chicken macrophages. Furthermore, Spop-deficient mice are more susceptible to infection with Salmonella typhimurium. Collectively, these findings demonstrate MyD88 as a bona fide substrate of SPOP and uncover a mechanism by which SPOP regulates MyD88 abundance and disease susceptibility. |
doi_str_mv | 10.1371/journal.ppat.1008188 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460980510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627433465</galeid><doaj_id>oai_doaj_org_article_89f6193cb5ec4deeb053d7e861a95f0b</doaj_id><sourcerecordid>A627433465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-14f88bc0dff5796fca19eb4a69115c1cbca327c15c603195dfcc114586290bf53</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I84FqSpfKxVaUbghWY4z3nqV2KntIPrv8bJp1UW9IB_GHj_va89oiuI5RktMavx246fgVL8cR5WWGCGBhXhQHGLGyKImNX14Z39QPIlxgxDFBPPHxQGpCGdIoMPi58X52Xk5Bj_4BLGcWns12WSdSta7Urmu7GAdVLc7e1N-uX4vRJl8GadxDBBjmS6htC4rchiGyUGZ06N3EZ4Wj4zqIzyb41Hx4-OH7yefF6dnn1Ynx6cLzTlOC0yNEK1GnTGsbrjRCjfQUsUbjJnGutWKVLXOe44IblhntMaYMsGrBrWGkaPi5c537H2Uc2OirChHjUAMo0ysdkTn1UaOwQ4qXEuvrPyb8GEtVUhW9yBFYzhuiG4ZaNoBtIiRrgbBsWqYQW32eje_NrUDdBpcCqrfM92_cfZSrv0vWVcVZbzOBq9ng-CvJohJDjZq6HvlwE_536TJpSGOtv9-9Q96f3UztVa5AOuMz-_qrak85lVNCaF826XlPVReHQxWewfG5vye4M2eIDMJfqe1mmKUq4tv_8F-3WfpjtXBxxjA3PYOI7md7Zsi5Xa25TzbWfbibt9vRTfDTP4A45_1Ag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460980510</pqid></control><display><type>article</type><title>SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response</title><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Qinghe ; Wang, Fei ; Wang, Qiao ; Zhang, Na ; Zheng, Jumei ; Zheng, Maiqing ; Liu, Ranran ; Cui, Huanxian ; Wen, Jie ; Zhao, Guiping</creator><contributor>Luo, Zhao-Qing</contributor><creatorcontrib>Li, Qinghe ; Wang, Fei ; Wang, Qiao ; Zhang, Na ; Zheng, Jumei ; Zheng, Maiqing ; Liu, Ranran ; Cui, Huanxian ; Wen, Jie ; Zhao, Guiping ; Luo, Zhao-Qing</creatorcontrib><description>As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin 3-based ubiquitin ligase adaptor Speckle-type BTB-POZ protein (chSPOP) recognizes the intermediate domain of chicken MyD88 (chMyD88) and degrades it through the proteasome pathway. Knockdown or genetic ablation of chSPOP leads to aberrant elevation of chMyD88 protein. Through this interaction, chSPOP negatively regulates NF-κB pathway activity and thus the production of IL-1β upon LPS challenge in chicken macrophages. Furthermore, Spop-deficient mice are more susceptible to infection with Salmonella typhimurium. Collectively, these findings demonstrate MyD88 as a bona fide substrate of SPOP and uncover a mechanism by which SPOP regulates MyD88 abundance and disease susceptibility.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008188</identifier><identifier>PMID: 32365080</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Animal sciences ; Antibodies ; Autoimmune diseases ; Biology and Life Sciences ; Chickens ; Cullin ; Cytokines ; Funding ; Health aspects ; Host-parasite relationships ; IL-1β ; Immune response ; Immune system ; Infections ; Innate immunity ; Kinases ; Laboratories ; Lipopolysaccharides ; Macrophages ; Medicine and Health Sciences ; Microorganisms ; Mutation ; MyD88 protein ; NF-κB protein ; Nutrition ; Observations ; Pathogens ; Phosphatase ; Phosphorylation ; Poultry ; Proteasomes ; Proteins ; Regulation ; Research and Analysis Methods ; Salmonella ; Substrates ; Toll-like receptors ; Ubiquitin ; Ubiquitin-protein ligase ; Ubiquitination</subject><ispartof>PLoS pathogens, 2020-05, Vol.16 (5), p.e1008188-e1008188</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Li et al 2020 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-14f88bc0dff5796fca19eb4a69115c1cbca327c15c603195dfcc114586290bf53</citedby><cites>FETCH-LOGICAL-c661t-14f88bc0dff5796fca19eb4a69115c1cbca327c15c603195dfcc114586290bf53</cites><orcidid>0000-0002-9698-829X ; 0000-0003-1332-3952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224567/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32365080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Luo, Zhao-Qing</contributor><creatorcontrib>Li, Qinghe</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Zheng, Jumei</creatorcontrib><creatorcontrib>Zheng, Maiqing</creatorcontrib><creatorcontrib>Liu, Ranran</creatorcontrib><creatorcontrib>Cui, Huanxian</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><creatorcontrib>Zhao, Guiping</creatorcontrib><title>SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin 3-based ubiquitin ligase adaptor Speckle-type BTB-POZ protein (chSPOP) recognizes the intermediate domain of chicken MyD88 (chMyD88) and degrades it through the proteasome pathway. Knockdown or genetic ablation of chSPOP leads to aberrant elevation of chMyD88 protein. Through this interaction, chSPOP negatively regulates NF-κB pathway activity and thus the production of IL-1β upon LPS challenge in chicken macrophages. Furthermore, Spop-deficient mice are more susceptible to infection with Salmonella typhimurium. Collectively, these findings demonstrate MyD88 as a bona fide substrate of SPOP and uncover a mechanism by which SPOP regulates MyD88 abundance and disease susceptibility.</description><subject>Ablation</subject><subject>Animal sciences</subject><subject>Antibodies</subject><subject>Autoimmune diseases</subject><subject>Biology and Life Sciences</subject><subject>Chickens</subject><subject>Cullin</subject><subject>Cytokines</subject><subject>Funding</subject><subject>Health aspects</subject><subject>Host-parasite relationships</subject><subject>IL-1β</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Infections</subject><subject>Innate immunity</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Lipopolysaccharides</subject><subject>Macrophages</subject><subject>Medicine and Health Sciences</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>MyD88 protein</subject><subject>NF-κB protein</subject><subject>Nutrition</subject><subject>Observations</subject><subject>Pathogens</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Poultry</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Regulation</subject><subject>Research and Analysis Methods</subject><subject>Salmonella</subject><subject>Substrates</subject><subject>Toll-like receptors</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitination</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I84FqSpfKxVaUbghWY4z3nqV2KntIPrv8bJp1UW9IB_GHj_va89oiuI5RktMavx246fgVL8cR5WWGCGBhXhQHGLGyKImNX14Z39QPIlxgxDFBPPHxQGpCGdIoMPi58X52Xk5Bj_4BLGcWns12WSdSta7Urmu7GAdVLc7e1N-uX4vRJl8GadxDBBjmS6htC4rchiGyUGZ06N3EZ4Wj4zqIzyb41Hx4-OH7yefF6dnn1Ynx6cLzTlOC0yNEK1GnTGsbrjRCjfQUsUbjJnGutWKVLXOe44IblhntMaYMsGrBrWGkaPi5c537H2Uc2OirChHjUAMo0ysdkTn1UaOwQ4qXEuvrPyb8GEtVUhW9yBFYzhuiG4ZaNoBtIiRrgbBsWqYQW32eje_NrUDdBpcCqrfM92_cfZSrv0vWVcVZbzOBq9ng-CvJohJDjZq6HvlwE_536TJpSGOtv9-9Q96f3UztVa5AOuMz-_qrak85lVNCaF826XlPVReHQxWewfG5vye4M2eIDMJfqe1mmKUq4tv_8F-3WfpjtXBxxjA3PYOI7md7Zsi5Xa25TzbWfbibt9vRTfDTP4A45_1Ag</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Li, Qinghe</creator><creator>Wang, Fei</creator><creator>Wang, Qiao</creator><creator>Zhang, Na</creator><creator>Zheng, Jumei</creator><creator>Zheng, Maiqing</creator><creator>Liu, Ranran</creator><creator>Cui, Huanxian</creator><creator>Wen, Jie</creator><creator>Zhao, Guiping</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9698-829X</orcidid><orcidid>https://orcid.org/0000-0003-1332-3952</orcidid></search><sort><creationdate>20200501</creationdate><title>SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response</title><author>Li, Qinghe ; Wang, Fei ; Wang, Qiao ; Zhang, Na ; Zheng, Jumei ; Zheng, Maiqing ; Liu, Ranran ; Cui, Huanxian ; Wen, Jie ; Zhao, Guiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-14f88bc0dff5796fca19eb4a69115c1cbca327c15c603195dfcc114586290bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Animal sciences</topic><topic>Antibodies</topic><topic>Autoimmune diseases</topic><topic>Biology and Life Sciences</topic><topic>Chickens</topic><topic>Cullin</topic><topic>Cytokines</topic><topic>Funding</topic><topic>Health aspects</topic><topic>Host-parasite relationships</topic><topic>IL-1β</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Infections</topic><topic>Innate immunity</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Lipopolysaccharides</topic><topic>Macrophages</topic><topic>Medicine and Health Sciences</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>MyD88 protein</topic><topic>NF-κB protein</topic><topic>Nutrition</topic><topic>Observations</topic><topic>Pathogens</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Poultry</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Regulation</topic><topic>Research and Analysis Methods</topic><topic>Salmonella</topic><topic>Substrates</topic><topic>Toll-like receptors</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qinghe</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Zheng, Jumei</creatorcontrib><creatorcontrib>Zheng, Maiqing</creatorcontrib><creatorcontrib>Liu, Ranran</creatorcontrib><creatorcontrib>Cui, Huanxian</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><creatorcontrib>Zhao, Guiping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qinghe</au><au>Wang, Fei</au><au>Wang, Qiao</au><au>Zhang, Na</au><au>Zheng, Jumei</au><au>Zheng, Maiqing</au><au>Liu, Ranran</au><au>Cui, Huanxian</au><au>Wen, Jie</au><au>Zhao, Guiping</au><au>Luo, Zhao-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>e1008188</spage><epage>e1008188</epage><pages>e1008188-e1008188</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin 3-based ubiquitin ligase adaptor Speckle-type BTB-POZ protein (chSPOP) recognizes the intermediate domain of chicken MyD88 (chMyD88) and degrades it through the proteasome pathway. Knockdown or genetic ablation of chSPOP leads to aberrant elevation of chMyD88 protein. Through this interaction, chSPOP negatively regulates NF-κB pathway activity and thus the production of IL-1β upon LPS challenge in chicken macrophages. Furthermore, Spop-deficient mice are more susceptible to infection with Salmonella typhimurium. Collectively, these findings demonstrate MyD88 as a bona fide substrate of SPOP and uncover a mechanism by which SPOP regulates MyD88 abundance and disease susceptibility.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32365080</pmid><doi>10.1371/journal.ppat.1008188</doi><orcidid>https://orcid.org/0000-0002-9698-829X</orcidid><orcidid>https://orcid.org/0000-0003-1332-3952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2020-05, Vol.16 (5), p.e1008188-e1008188 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2460980510 |
source | PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Ablation Animal sciences Antibodies Autoimmune diseases Biology and Life Sciences Chickens Cullin Cytokines Funding Health aspects Host-parasite relationships IL-1β Immune response Immune system Infections Innate immunity Kinases Laboratories Lipopolysaccharides Macrophages Medicine and Health Sciences Microorganisms Mutation MyD88 protein NF-κB protein Nutrition Observations Pathogens Phosphatase Phosphorylation Poultry Proteasomes Proteins Regulation Research and Analysis Methods Salmonella Substrates Toll-like receptors Ubiquitin Ubiquitin-protein ligase Ubiquitination |
title | SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPOP%20promotes%20ubiquitination%20and%20degradation%20of%20MyD88%20to%20suppress%20the%20innate%20immune%20response&rft.jtitle=PLoS%20pathogens&rft.au=Li,%20Qinghe&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=e1008188&rft.epage=e1008188&rft.pages=e1008188-e1008188&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008188&rft_dat=%3Cgale_plos_%3EA627433465%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460980510&rft_id=info:pmid/32365080&rft_galeid=A627433465&rft_doaj_id=oai_doaj_org_article_89f6193cb5ec4deeb053d7e861a95f0b&rfr_iscdi=true |