Modeling the activation of the alternative complement pathway and its effects on hemolysis in health and disease
The complement system is a powerful mechanism of innate immunity poised to eliminate foreign cells and pathogens. It is an intricate network of >35 proteins, which, once activated, leads to the tagging of the surface to be eliminated, produces potent chemoattractants to recruit immune cells, and...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-10, Vol.16 (10), p.e1008139 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e1008139 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Caruso, Antonello Vollmer, Jannik Machacek, Matthias Kortvely, Elod |
description | The complement system is a powerful mechanism of innate immunity poised to eliminate foreign cells and pathogens. It is an intricate network of >35 proteins, which, once activated, leads to the tagging of the surface to be eliminated, produces potent chemoattractants to recruit immune cells, and inserts cytotoxic pores into nearby lipid surfaces. Although it can be triggered via different pathways, its net output is largely based on the direct or indirect activation of the alternative pathway. Complement dysregulation or deficiencies may cause severe pathologies, such as paroxysmal nocturnal hemoglobinuria (PNH), where a lack of complement control proteins leads to hemolysis and life-threatening anemia. The complexity of the system poses a challenge for the interpretation of experimental data and the design of effective pharmacological therapies. To address this issue, we developed a mathematical model of the alternative complement pathway building on previous modelling efforts. The model links complement activation to the hemolytic activity of the terminal alternative pathway, providing an accurate description of pathway activity as observed in vitro and in vivo, in health and disease. Through adjustment of the parameters describing experimental conditions, the model was capable of reproducing the results of an array of standard assays used in complement research. To demonstrate its clinical applicability, we compared model predictions with clinical observations of the recovery of hematological biomarkers in PNH patients treated with the complement inhibiting anti-C5 antibody eculizumab. In conclusion, the model can enhance the understanding of complement biology and its role in disease pathogenesis, help identifying promising targets for pharmacological intervention, and predict the outcome of complement-targeting pharmacological interventions. |
doi_str_mv | 10.1371/journal.pcbi.1008139 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460772942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645330919</galeid><doaj_id>oai_doaj_org_article_b7dd1bdece4f4d07a8661257628d9c8e</doaj_id><sourcerecordid>A645330919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-c3e917935c838037e403955ce836336adbada6b450f4f39c4b6b960e87007f873</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIRNvAP0CwEpdySLDj7wtSVfERqYDEx9ny2rOJo931snYK-fd4m23VoF6QD7bHz_uOZzRF8QKjBSYCv92G3dCZZtHbyi8wQhIT9ag4xYyRuSBMPr53PinOYtwilI-KPy1OCEGIK85Oi_5zcND4bl2mDZTGJn9tkg9dGepDpEmQ0-QwlDa0fQMtdKnsTdr8NvvSdK70KZZQ12DznoUbaEOzjz6Wfrxkg80N5nwEE-FZ8aQ2TYTn0z4rfn54_-Py0_zq68fV5cXV3HKO09wSUFgowqwkEhEBFBHFmAVJOCHcuMo4wyvKUE1roiyteKU4AikQErUUZFa8Ovj2TYh6albUS8qREEtFl5lYHQgXzFb3g2_NsNfBeH0TCMNamyF524CuhHO4cmCB1tQhYWT-5JIJvpROWQnZ692UbVe14Gzu0WCaI9Pjl85v9Dpca8EIHkuaFeeTwRB-7SAm3fpooWlMB2E3_ptKijgjMqOv_0Efrm6i1iYX4Ls65Lx2NNUXnLI8AQqrTC0eoPJy0HobOqh9jh8J3hwJMpPgT1qbXYx69f3bf7Bfjll6YO0QYhygvusdRnqc99si9Tjvepr3LHt5v-93otsBJ38BdQH78Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460772942</pqid></control><display><type>article</type><title>Modeling the activation of the alternative complement pathway and its effects on hemolysis in health and disease</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Caruso, Antonello ; Vollmer, Jannik ; Machacek, Matthias ; Kortvely, Elod</creator><contributor>Faeder, James R.</contributor><creatorcontrib>Caruso, Antonello ; Vollmer, Jannik ; Machacek, Matthias ; Kortvely, Elod ; Faeder, James R.</creatorcontrib><description>The complement system is a powerful mechanism of innate immunity poised to eliminate foreign cells and pathogens. It is an intricate network of >35 proteins, which, once activated, leads to the tagging of the surface to be eliminated, produces potent chemoattractants to recruit immune cells, and inserts cytotoxic pores into nearby lipid surfaces. Although it can be triggered via different pathways, its net output is largely based on the direct or indirect activation of the alternative pathway. Complement dysregulation or deficiencies may cause severe pathologies, such as paroxysmal nocturnal hemoglobinuria (PNH), where a lack of complement control proteins leads to hemolysis and life-threatening anemia. The complexity of the system poses a challenge for the interpretation of experimental data and the design of effective pharmacological therapies. To address this issue, we developed a mathematical model of the alternative complement pathway building on previous modelling efforts. The model links complement activation to the hemolytic activity of the terminal alternative pathway, providing an accurate description of pathway activity as observed in vitro and in vivo, in health and disease. Through adjustment of the parameters describing experimental conditions, the model was capable of reproducing the results of an array of standard assays used in complement research. To demonstrate its clinical applicability, we compared model predictions with clinical observations of the recovery of hematological biomarkers in PNH patients treated with the complement inhibiting anti-C5 antibody eculizumab. In conclusion, the model can enhance the understanding of complement biology and its role in disease pathogenesis, help identifying promising targets for pharmacological intervention, and predict the outcome of complement-targeting pharmacological interventions.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008139</identifier><identifier>PMID: 33006965</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alternative pathway ; Analysis ; Anemia ; Antibodies ; Antibodies, Monoclonal, Humanized - pharmacology ; Antibodies, Monoclonal, Humanized - therapeutic use ; Biology and Life Sciences ; Biomarkers ; Chemotactic factors ; Clinical trials ; Complement ; Complement activation ; Complement Activation - drug effects ; Complement Activation - physiology ; Complement component C5 ; Complement control proteins ; Complement Inactivating Agents - pharmacology ; Complement Inactivating Agents - therapeutic use ; Complement Pathway, Alternative - drug effects ; Complement Pathway, Alternative - physiology ; Complement system ; Computational Biology ; Cytotoxicity ; Development and progression ; Health aspects ; Hematology ; Hemoglobin ; Hemoglobinuria, Paroxysmal - drug therapy ; Hemoglobinuria, Paroxysmal - physiopathology ; Hemolysis ; Hemolysis - drug effects ; Hemolysis - physiology ; Hemolysis and hemolysins ; Homeostasis ; Humans ; Immune system ; Innate immunity ; Inserts ; Kidney diseases ; Lipids ; Macular degeneration ; Mathematical models ; Medicine and Health Sciences ; Models, Immunological ; Paroxysmal nocturnal hemoglobinuria ; Pathogenesis ; Pathogens ; Pharmacology ; Proteins ; Research and Analysis Methods ; Software ; Tagging ; Ubiquitin-proteasome system</subject><ispartof>PLoS computational biology, 2020-10, Vol.16 (10), p.e1008139</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Caruso et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Caruso et al 2020 Caruso et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-c3e917935c838037e403955ce836336adbada6b450f4f39c4b6b960e87007f873</citedby><cites>FETCH-LOGICAL-c661t-c3e917935c838037e403955ce836336adbada6b450f4f39c4b6b960e87007f873</cites><orcidid>0000-0001-8341-7730 ; 0000-0001-5832-3636 ; 0000-0003-0541-2365 ; 0000-0003-1599-3116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531836/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531836/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33006965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Faeder, James R.</contributor><creatorcontrib>Caruso, Antonello</creatorcontrib><creatorcontrib>Vollmer, Jannik</creatorcontrib><creatorcontrib>Machacek, Matthias</creatorcontrib><creatorcontrib>Kortvely, Elod</creatorcontrib><title>Modeling the activation of the alternative complement pathway and its effects on hemolysis in health and disease</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The complement system is a powerful mechanism of innate immunity poised to eliminate foreign cells and pathogens. It is an intricate network of >35 proteins, which, once activated, leads to the tagging of the surface to be eliminated, produces potent chemoattractants to recruit immune cells, and inserts cytotoxic pores into nearby lipid surfaces. Although it can be triggered via different pathways, its net output is largely based on the direct or indirect activation of the alternative pathway. Complement dysregulation or deficiencies may cause severe pathologies, such as paroxysmal nocturnal hemoglobinuria (PNH), where a lack of complement control proteins leads to hemolysis and life-threatening anemia. The complexity of the system poses a challenge for the interpretation of experimental data and the design of effective pharmacological therapies. To address this issue, we developed a mathematical model of the alternative complement pathway building on previous modelling efforts. The model links complement activation to the hemolytic activity of the terminal alternative pathway, providing an accurate description of pathway activity as observed in vitro and in vivo, in health and disease. Through adjustment of the parameters describing experimental conditions, the model was capable of reproducing the results of an array of standard assays used in complement research. To demonstrate its clinical applicability, we compared model predictions with clinical observations of the recovery of hematological biomarkers in PNH patients treated with the complement inhibiting anti-C5 antibody eculizumab. In conclusion, the model can enhance the understanding of complement biology and its role in disease pathogenesis, help identifying promising targets for pharmacological intervention, and predict the outcome of complement-targeting pharmacological interventions.</description><subject>Alternative pathway</subject><subject>Analysis</subject><subject>Anemia</subject><subject>Antibodies</subject><subject>Antibodies, Monoclonal, Humanized - pharmacology</subject><subject>Antibodies, Monoclonal, Humanized - therapeutic use</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Chemotactic factors</subject><subject>Clinical trials</subject><subject>Complement</subject><subject>Complement activation</subject><subject>Complement Activation - drug effects</subject><subject>Complement Activation - physiology</subject><subject>Complement component C5</subject><subject>Complement control proteins</subject><subject>Complement Inactivating Agents - pharmacology</subject><subject>Complement Inactivating Agents - therapeutic use</subject><subject>Complement Pathway, Alternative - drug effects</subject><subject>Complement Pathway, Alternative - physiology</subject><subject>Complement system</subject><subject>Computational Biology</subject><subject>Cytotoxicity</subject><subject>Development and progression</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>Hemoglobin</subject><subject>Hemoglobinuria, Paroxysmal - drug therapy</subject><subject>Hemoglobinuria, Paroxysmal - physiopathology</subject><subject>Hemolysis</subject><subject>Hemolysis - drug effects</subject><subject>Hemolysis - physiology</subject><subject>Hemolysis and hemolysins</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immune system</subject><subject>Innate immunity</subject><subject>Inserts</subject><subject>Kidney diseases</subject><subject>Lipids</subject><subject>Macular degeneration</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Immunological</subject><subject>Paroxysmal nocturnal hemoglobinuria</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Pharmacology</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Tagging</subject><subject>Ubiquitin-proteasome system</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIRNvAP0CwEpdySLDj7wtSVfERqYDEx9ny2rOJo931snYK-fd4m23VoF6QD7bHz_uOZzRF8QKjBSYCv92G3dCZZtHbyi8wQhIT9ag4xYyRuSBMPr53PinOYtwilI-KPy1OCEGIK85Oi_5zcND4bl2mDZTGJn9tkg9dGepDpEmQ0-QwlDa0fQMtdKnsTdr8NvvSdK70KZZQ12DznoUbaEOzjz6Wfrxkg80N5nwEE-FZ8aQ2TYTn0z4rfn54_-Py0_zq68fV5cXV3HKO09wSUFgowqwkEhEBFBHFmAVJOCHcuMo4wyvKUE1roiyteKU4AikQErUUZFa8Ovj2TYh6albUS8qREEtFl5lYHQgXzFb3g2_NsNfBeH0TCMNamyF524CuhHO4cmCB1tQhYWT-5JIJvpROWQnZ692UbVe14Gzu0WCaI9Pjl85v9Dpca8EIHkuaFeeTwRB-7SAm3fpooWlMB2E3_ptKijgjMqOv_0Efrm6i1iYX4Ls65Lx2NNUXnLI8AQqrTC0eoPJy0HobOqh9jh8J3hwJMpPgT1qbXYx69f3bf7Bfjll6YO0QYhygvusdRnqc99si9Tjvepr3LHt5v-93otsBJ38BdQH78Q</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Caruso, Antonello</creator><creator>Vollmer, Jannik</creator><creator>Machacek, Matthias</creator><creator>Kortvely, Elod</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8341-7730</orcidid><orcidid>https://orcid.org/0000-0001-5832-3636</orcidid><orcidid>https://orcid.org/0000-0003-0541-2365</orcidid><orcidid>https://orcid.org/0000-0003-1599-3116</orcidid></search><sort><creationdate>20201002</creationdate><title>Modeling the activation of the alternative complement pathway and its effects on hemolysis in health and disease</title><author>Caruso, Antonello ; Vollmer, Jannik ; Machacek, Matthias ; Kortvely, Elod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-c3e917935c838037e403955ce836336adbada6b450f4f39c4b6b960e87007f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative pathway</topic><topic>Analysis</topic><topic>Anemia</topic><topic>Antibodies</topic><topic>Antibodies, Monoclonal, Humanized - pharmacology</topic><topic>Antibodies, Monoclonal, Humanized - therapeutic use</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Chemotactic factors</topic><topic>Clinical trials</topic><topic>Complement</topic><topic>Complement activation</topic><topic>Complement Activation - drug effects</topic><topic>Complement Activation - physiology</topic><topic>Complement component C5</topic><topic>Complement control proteins</topic><topic>Complement Inactivating Agents - pharmacology</topic><topic>Complement Inactivating Agents - therapeutic use</topic><topic>Complement Pathway, Alternative - drug effects</topic><topic>Complement Pathway, Alternative - physiology</topic><topic>Complement system</topic><topic>Computational Biology</topic><topic>Cytotoxicity</topic><topic>Development and progression</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>Hemoglobin</topic><topic>Hemoglobinuria, Paroxysmal - drug therapy</topic><topic>Hemoglobinuria, Paroxysmal - physiopathology</topic><topic>Hemolysis</topic><topic>Hemolysis - drug effects</topic><topic>Hemolysis - physiology</topic><topic>Hemolysis and hemolysins</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immune system</topic><topic>Innate immunity</topic><topic>Inserts</topic><topic>Kidney diseases</topic><topic>Lipids</topic><topic>Macular degeneration</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Immunological</topic><topic>Paroxysmal nocturnal hemoglobinuria</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Pharmacology</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Tagging</topic><topic>Ubiquitin-proteasome system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caruso, Antonello</creatorcontrib><creatorcontrib>Vollmer, Jannik</creatorcontrib><creatorcontrib>Machacek, Matthias</creatorcontrib><creatorcontrib>Kortvely, Elod</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caruso, Antonello</au><au>Vollmer, Jannik</au><au>Machacek, Matthias</au><au>Kortvely, Elod</au><au>Faeder, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the activation of the alternative complement pathway and its effects on hemolysis in health and disease</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-10-02</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>e1008139</spage><pages>e1008139-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The complement system is a powerful mechanism of innate immunity poised to eliminate foreign cells and pathogens. It is an intricate network of >35 proteins, which, once activated, leads to the tagging of the surface to be eliminated, produces potent chemoattractants to recruit immune cells, and inserts cytotoxic pores into nearby lipid surfaces. Although it can be triggered via different pathways, its net output is largely based on the direct or indirect activation of the alternative pathway. Complement dysregulation or deficiencies may cause severe pathologies, such as paroxysmal nocturnal hemoglobinuria (PNH), where a lack of complement control proteins leads to hemolysis and life-threatening anemia. The complexity of the system poses a challenge for the interpretation of experimental data and the design of effective pharmacological therapies. To address this issue, we developed a mathematical model of the alternative complement pathway building on previous modelling efforts. The model links complement activation to the hemolytic activity of the terminal alternative pathway, providing an accurate description of pathway activity as observed in vitro and in vivo, in health and disease. Through adjustment of the parameters describing experimental conditions, the model was capable of reproducing the results of an array of standard assays used in complement research. To demonstrate its clinical applicability, we compared model predictions with clinical observations of the recovery of hematological biomarkers in PNH patients treated with the complement inhibiting anti-C5 antibody eculizumab. In conclusion, the model can enhance the understanding of complement biology and its role in disease pathogenesis, help identifying promising targets for pharmacological intervention, and predict the outcome of complement-targeting pharmacological interventions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33006965</pmid><doi>10.1371/journal.pcbi.1008139</doi><orcidid>https://orcid.org/0000-0001-8341-7730</orcidid><orcidid>https://orcid.org/0000-0001-5832-3636</orcidid><orcidid>https://orcid.org/0000-0003-0541-2365</orcidid><orcidid>https://orcid.org/0000-0003-1599-3116</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-10, Vol.16 (10), p.e1008139 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2460772942 |
source | Public Library of Science (PLoS) Journals Open Access; Open Access: PubMed Central; MEDLINE; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Alternative pathway Analysis Anemia Antibodies Antibodies, Monoclonal, Humanized - pharmacology Antibodies, Monoclonal, Humanized - therapeutic use Biology and Life Sciences Biomarkers Chemotactic factors Clinical trials Complement Complement activation Complement Activation - drug effects Complement Activation - physiology Complement component C5 Complement control proteins Complement Inactivating Agents - pharmacology Complement Inactivating Agents - therapeutic use Complement Pathway, Alternative - drug effects Complement Pathway, Alternative - physiology Complement system Computational Biology Cytotoxicity Development and progression Health aspects Hematology Hemoglobin Hemoglobinuria, Paroxysmal - drug therapy Hemoglobinuria, Paroxysmal - physiopathology Hemolysis Hemolysis - drug effects Hemolysis - physiology Hemolysis and hemolysins Homeostasis Humans Immune system Innate immunity Inserts Kidney diseases Lipids Macular degeneration Mathematical models Medicine and Health Sciences Models, Immunological Paroxysmal nocturnal hemoglobinuria Pathogenesis Pathogens Pharmacology Proteins Research and Analysis Methods Software Tagging Ubiquitin-proteasome system |
title | Modeling the activation of the alternative complement pathway and its effects on hemolysis in health and disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20activation%20of%20the%20alternative%20complement%20pathway%20and%20its%20effects%20on%20hemolysis%20in%20health%20and%20disease&rft.jtitle=PLoS%20computational%20biology&rft.au=Caruso,%20Antonello&rft.date=2020-10-02&rft.volume=16&rft.issue=10&rft.spage=e1008139&rft.pages=e1008139-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008139&rft_dat=%3Cgale_plos_%3EA645330919%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460772942&rft_id=info:pmid/33006965&rft_galeid=A645330919&rft_doaj_id=oai_doaj_org_article_b7dd1bdece4f4d07a8661257628d9c8e&rfr_iscdi=true |