Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin
Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-10, Vol.16 (10), p.e1008318-e1008318 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008318 |
---|---|
container_issue | 10 |
container_start_page | e1008318 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Pereira-Santana, Alejandro Gamboa-Tuz, Samuel David Zhao, Tao Schranz, M Eric Vinuesa, Pablo Bayona, Andrea Rodríguez-Zapata, Luis C Castano, Enrique |
description | Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved. |
doi_str_mv | 10.1371/journal.pcbi.1008318 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460772732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645332347</galeid><doaj_id>oai_doaj_org_article_a1ffb096aa2142aaa64edca4579ef663</doaj_id><sourcerecordid>A645332347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-9b18ed5ddfb6cb305ae804003fdacb8094628273f896e9c7e93c30d70ba4ec243</originalsourceid><addsrcrecordid>eNqVU02PEzEMHSEQuxT-AYJIXODQkplkvjggrSoWKlUgwXKOMhlnmjJNSpLp0n_Ez8TddqsWcUE52Iqf_Z6dOEmep3SSsjJ9u3SDt7KfrFVjJimlFUurB8llmudsXLK8enjiXyRPQlhSim5dPE4uGKNlTit6mfy-No03fS-9sQQ2rh-icZbEhXdDt0AL5MYDEKfJ3Gh4R6ZutZZeRrMB0oF1K6MCkbYl6HgXtjaC3RIL8db5HxiQ_TZAIGvvNqYFDNwSY4PpFjGgE90dxZFY-i1ZmBAdWqQ8Efc0eaRlH-DZwY6S79cfbqafxvMvH2fTq_lYFYzFcd2kFbR52-qmUA2juYSKcuxct1I1Fa15kVVZyTQOAmpVQs0Uo21JG8lBZZyNkpf7uuveBXEYchAZL2hZYmKGiNke0Tq5FGtvVqhaOGnE3YXznZA-GtWDkKnWDa0LKbOUZ1LKgkOrJM_LGnSBgkfJ-wPb0KwwBDZ62Z8VPY9YsxCd24iyoFXNd2JeHwp493OAEMXKBAU4Mwtu2OnOM17X-NYIffUX9N_dTfaoTmIDxmqHvApPC_jCzoI2eH9V8JwhmpeY8OYsATERfsVODiGI2bev_4H9fI7le-zuWwUP-jiVlIrdBtzLF7sNEIcNwLQXpxM9Jt1_efYHHAQH9A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460772732</pqid></control><display><type>article</type><title>Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Pereira-Santana, Alejandro ; Gamboa-Tuz, Samuel David ; Zhao, Tao ; Schranz, M Eric ; Vinuesa, Pablo ; Bayona, Andrea ; Rodríguez-Zapata, Luis C ; Castano, Enrique</creator><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Pereira-Santana, Alejandro ; Gamboa-Tuz, Samuel David ; Zhao, Tao ; Schranz, M Eric ; Vinuesa, Pablo ; Bayona, Andrea ; Rodríguez-Zapata, Luis C ; Castano, Enrique ; Kosakovsky Pond, Sergei L.</creatorcontrib><description>Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008318</identifier><identifier>PMID: 33075080</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Archaea ; Bacteria ; Bacteria - genetics ; Biology and Life Sciences ; Cancer ; Chromosomal Proteins, Non-Histone - chemistry ; Chromosomal Proteins, Non-Histone - classification ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Comparative analysis ; Computer and Information Sciences ; Conservation ; Conserved Sequence ; Context ; DNA methylation ; Earth Sciences ; Engineering and Technology ; Eukarya ; Eukaryota - genetics ; Eukaryotes ; Evolution ; Evolutionary biology ; Evolutionary genetics ; Fibrillarin ; Gene expression ; Genes ; Genetic engineering ; Genomes ; Genomics ; Genomics - methods ; Histone H2A ; Mammals ; Mammals - genetics ; Metabolism ; Methylation ; Methyltransferase ; Methyltransferases ; Methyltransferases - chemistry ; Methyltransferases - classification ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Natural history ; Plants - genetics ; Primates ; Protection and preservation ; Proteins ; Reproduction (copying) ; Ribosomal RNA ; rRNA ; Synteny ; Transposition ; Viruses ; Viruses - genetics</subject><ispartof>PLoS computational biology, 2020-10, Vol.16 (10), p.e1008318-e1008318</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Pereira-Santana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Pereira-Santana et al 2020 Pereira-Santana et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-9b18ed5ddfb6cb305ae804003fdacb8094628273f896e9c7e93c30d70ba4ec243</citedby><cites>FETCH-LOGICAL-c633t-9b18ed5ddfb6cb305ae804003fdacb8094628273f896e9c7e93c30d70ba4ec243</cites><orcidid>0000-0001-6777-6565 ; 0000-0003-2645-9541 ; 0000-0001-7714-9485 ; 0000-0002-6863-7943 ; 0000-0001-6119-2956 ; 0000-0001-7302-6445 ; 0000-0002-4872-8231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608942/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608942/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33075080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Pereira-Santana, Alejandro</creatorcontrib><creatorcontrib>Gamboa-Tuz, Samuel David</creatorcontrib><creatorcontrib>Zhao, Tao</creatorcontrib><creatorcontrib>Schranz, M Eric</creatorcontrib><creatorcontrib>Vinuesa, Pablo</creatorcontrib><creatorcontrib>Bayona, Andrea</creatorcontrib><creatorcontrib>Rodríguez-Zapata, Luis C</creatorcontrib><creatorcontrib>Castano, Enrique</creatorcontrib><title>Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved.</description><subject>Analysis</subject><subject>Animals</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Chromosomal Proteins, Non-Histone - chemistry</subject><subject>Chromosomal Proteins, Non-Histone - classification</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Comparative analysis</subject><subject>Computer and Information Sciences</subject><subject>Conservation</subject><subject>Conserved Sequence</subject><subject>Context</subject><subject>DNA methylation</subject><subject>Earth Sciences</subject><subject>Engineering and Technology</subject><subject>Eukarya</subject><subject>Eukaryota - genetics</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Evolutionary biology</subject><subject>Evolutionary genetics</subject><subject>Fibrillarin</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Histone H2A</subject><subject>Mammals</subject><subject>Mammals - genetics</subject><subject>Metabolism</subject><subject>Methylation</subject><subject>Methyltransferase</subject><subject>Methyltransferases</subject><subject>Methyltransferases - chemistry</subject><subject>Methyltransferases - classification</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Natural history</subject><subject>Plants - genetics</subject><subject>Primates</subject><subject>Protection and preservation</subject><subject>Proteins</subject><subject>Reproduction (copying)</subject><subject>Ribosomal RNA</subject><subject>rRNA</subject><subject>Synteny</subject><subject>Transposition</subject><subject>Viruses</subject><subject>Viruses - genetics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVU02PEzEMHSEQuxT-AYJIXODQkplkvjggrSoWKlUgwXKOMhlnmjJNSpLp0n_Ez8TddqsWcUE52Iqf_Z6dOEmep3SSsjJ9u3SDt7KfrFVjJimlFUurB8llmudsXLK8enjiXyRPQlhSim5dPE4uGKNlTit6mfy-No03fS-9sQQ2rh-icZbEhXdDt0AL5MYDEKfJ3Gh4R6ZutZZeRrMB0oF1K6MCkbYl6HgXtjaC3RIL8db5HxiQ_TZAIGvvNqYFDNwSY4PpFjGgE90dxZFY-i1ZmBAdWqQ8Efc0eaRlH-DZwY6S79cfbqafxvMvH2fTq_lYFYzFcd2kFbR52-qmUA2juYSKcuxct1I1Fa15kVVZyTQOAmpVQs0Uo21JG8lBZZyNkpf7uuveBXEYchAZL2hZYmKGiNke0Tq5FGtvVqhaOGnE3YXznZA-GtWDkKnWDa0LKbOUZ1LKgkOrJM_LGnSBgkfJ-wPb0KwwBDZ62Z8VPY9YsxCd24iyoFXNd2JeHwp493OAEMXKBAU4Mwtu2OnOM17X-NYIffUX9N_dTfaoTmIDxmqHvApPC_jCzoI2eH9V8JwhmpeY8OYsATERfsVODiGI2bev_4H9fI7le-zuWwUP-jiVlIrdBtzLF7sNEIcNwLQXpxM9Jt1_efYHHAQH9A</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Pereira-Santana, Alejandro</creator><creator>Gamboa-Tuz, Samuel David</creator><creator>Zhao, Tao</creator><creator>Schranz, M Eric</creator><creator>Vinuesa, Pablo</creator><creator>Bayona, Andrea</creator><creator>Rodríguez-Zapata, Luis C</creator><creator>Castano, Enrique</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6777-6565</orcidid><orcidid>https://orcid.org/0000-0003-2645-9541</orcidid><orcidid>https://orcid.org/0000-0001-7714-9485</orcidid><orcidid>https://orcid.org/0000-0002-6863-7943</orcidid><orcidid>https://orcid.org/0000-0001-6119-2956</orcidid><orcidid>https://orcid.org/0000-0001-7302-6445</orcidid><orcidid>https://orcid.org/0000-0002-4872-8231</orcidid></search><sort><creationdate>20201019</creationdate><title>Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin</title><author>Pereira-Santana, Alejandro ; Gamboa-Tuz, Samuel David ; Zhao, Tao ; Schranz, M Eric ; Vinuesa, Pablo ; Bayona, Andrea ; Rodríguez-Zapata, Luis C ; Castano, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-9b18ed5ddfb6cb305ae804003fdacb8094628273f896e9c7e93c30d70ba4ec243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Chromosomal Proteins, Non-Histone - chemistry</topic><topic>Chromosomal Proteins, Non-Histone - classification</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Comparative analysis</topic><topic>Computer and Information Sciences</topic><topic>Conservation</topic><topic>Conserved Sequence</topic><topic>Context</topic><topic>DNA methylation</topic><topic>Earth Sciences</topic><topic>Engineering and Technology</topic><topic>Eukarya</topic><topic>Eukaryota - genetics</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Evolutionary biology</topic><topic>Evolutionary genetics</topic><topic>Fibrillarin</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Histone H2A</topic><topic>Mammals</topic><topic>Mammals - genetics</topic><topic>Metabolism</topic><topic>Methylation</topic><topic>Methyltransferase</topic><topic>Methyltransferases</topic><topic>Methyltransferases - chemistry</topic><topic>Methyltransferases - classification</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Natural history</topic><topic>Plants - genetics</topic><topic>Primates</topic><topic>Protection and preservation</topic><topic>Proteins</topic><topic>Reproduction (copying)</topic><topic>Ribosomal RNA</topic><topic>rRNA</topic><topic>Synteny</topic><topic>Transposition</topic><topic>Viruses</topic><topic>Viruses - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira-Santana, Alejandro</creatorcontrib><creatorcontrib>Gamboa-Tuz, Samuel David</creatorcontrib><creatorcontrib>Zhao, Tao</creatorcontrib><creatorcontrib>Schranz, M Eric</creatorcontrib><creatorcontrib>Vinuesa, Pablo</creatorcontrib><creatorcontrib>Bayona, Andrea</creatorcontrib><creatorcontrib>Rodríguez-Zapata, Luis C</creatorcontrib><creatorcontrib>Castano, Enrique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira-Santana, Alejandro</au><au>Gamboa-Tuz, Samuel David</au><au>Zhao, Tao</au><au>Schranz, M Eric</au><au>Vinuesa, Pablo</au><au>Bayona, Andrea</au><au>Rodríguez-Zapata, Luis C</au><au>Castano, Enrique</au><au>Kosakovsky Pond, Sergei L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-10-19</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>e1008318</spage><epage>e1008318</epage><pages>e1008318-e1008318</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33075080</pmid><doi>10.1371/journal.pcbi.1008318</doi><orcidid>https://orcid.org/0000-0001-6777-6565</orcidid><orcidid>https://orcid.org/0000-0003-2645-9541</orcidid><orcidid>https://orcid.org/0000-0001-7714-9485</orcidid><orcidid>https://orcid.org/0000-0002-6863-7943</orcidid><orcidid>https://orcid.org/0000-0001-6119-2956</orcidid><orcidid>https://orcid.org/0000-0001-7302-6445</orcidid><orcidid>https://orcid.org/0000-0002-4872-8231</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-10, Vol.16 (10), p.e1008318-e1008318 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2460772732 |
source | PubMed (Medline); MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Analysis Animals Archaea Bacteria Bacteria - genetics Biology and Life Sciences Cancer Chromosomal Proteins, Non-Histone - chemistry Chromosomal Proteins, Non-Histone - classification Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism Comparative analysis Computer and Information Sciences Conservation Conserved Sequence Context DNA methylation Earth Sciences Engineering and Technology Eukarya Eukaryota - genetics Eukaryotes Evolution Evolutionary biology Evolutionary genetics Fibrillarin Gene expression Genes Genetic engineering Genomes Genomics Genomics - methods Histone H2A Mammals Mammals - genetics Metabolism Methylation Methyltransferase Methyltransferases Methyltransferases - chemistry Methyltransferases - classification Methyltransferases - genetics Methyltransferases - metabolism Natural history Plants - genetics Primates Protection and preservation Proteins Reproduction (copying) Ribosomal RNA rRNA Synteny Transposition Viruses Viruses - genetics |
title | Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibrillarin%20evolution%20through%20the%20Tree%20of%20Life:%20Comparative%20genomics%20and%20microsynteny%20network%20analyses%20provide%20new%20insights%20into%20the%20evolutionary%20history%20of%20Fibrillarin&rft.jtitle=PLoS%20computational%20biology&rft.au=Pereira-Santana,%20Alejandro&rft.date=2020-10-19&rft.volume=16&rft.issue=10&rft.spage=e1008318&rft.epage=e1008318&rft.pages=e1008318-e1008318&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008318&rft_dat=%3Cgale_plos_%3EA645332347%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460772732&rft_id=info:pmid/33075080&rft_galeid=A645332347&rft_doaj_id=oai_doaj_org_article_a1ffb096aa2142aaa64edca4579ef663&rfr_iscdi=true |