Nuclear plasticity increases susceptibility to damage during confined migration

Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-10, Vol.16 (10), p.e1008300-e1008300
Hauptverfasser: Mukherjee, Abhishek, Barai, Amlan, Singh, Ramesh K, Yan, Wenyi, Sen, Shamik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008300
container_issue 10
container_start_page e1008300
container_title PLoS computational biology
container_volume 16
creator Mukherjee, Abhishek
Barai, Amlan
Singh, Ramesh K
Yan, Wenyi
Sen, Shamik
description Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage.
doi_str_mv 10.1371/journal.pcbi.1008300
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460772704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645330854</galeid><doaj_id>oai_doaj_org_article_1cd5204ab28346f591448bb63094f2f8</doaj_id><sourcerecordid>A645330854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-1558eb7e7958b9bb379b0f368f3fb17eedf2a6363590fae9a924896807f176ef3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4lIOu9jxK75UqqoCK1WtxONs2c44eJXEi50g-u1x2LTqol6QDx6Nf_Ofh6coXmO0xkTgD9swxUF36501fo0RqglCT4pjzBhZCcLqpw_so-JFSluEsin58-KIkGxWFT4ubq4n24GO5a7TafTWj7elH2wEnSCVaUoWdqM3vpsfxlA2utctlM0U_dCWNgzOD9CUvW-jHn0YXhbPnO4SvFruk-L7x8tvF59XVzefNhfnVyvLOR5XubIajAAhWW2kMURIgxzhtSPOYAHQuEpzwgmTyGmQWlY0l14j4bDg4MhJ8Xavu-tCUssskqooR0JUAtFMbPZEE_RW7aLvdbxVQXv11xFiq3TMHXegsG1Yhag2VU0od0xiSmtjOEGSusrVWetsyTaZHhoLwxh1dyB6-DL4H6oNv5RgQlBZZYHTRSCGnxOkUfU-j7br9ABhmuumUjIp5Zzr3T_o490tVKtzA35wIee1s6g655TlD67ZTK0fofJpoPf588D57D8IeH8QkJkRfo-tnlJSm69f_oO9PmTpnrUxpBTB3c8OIzWv812Tal5ntaxzDnvzcO73QXf7S_4AZmbwAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460772704</pqid></control><display><type>article</type><title>Nuclear plasticity increases susceptibility to damage during confined migration</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Mukherjee, Abhishek ; Barai, Amlan ; Singh, Ramesh K ; Yan, Wenyi ; Sen, Shamik</creator><contributor>Discher, Dennis E.</contributor><creatorcontrib>Mukherjee, Abhishek ; Barai, Amlan ; Singh, Ramesh K ; Yan, Wenyi ; Sen, Shamik ; Discher, Dennis E.</creatorcontrib><description>Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008300</identifier><identifier>PMID: 33035221</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aerospace engineering ; Bioengineering ; Biology and Life Sciences ; Cell adhesion &amp; migration ; Cell Line, Tumor ; Cell migration ; Cell Movement - physiology ; Cell Nucleus - physiology ; Confined spaces ; Cytoskeleton ; Damage ; Deformation ; Deoxyribonucleic acid ; DNA ; DNA Damage ; Fibrosarcoma ; Finite Element Analysis ; Finite element method ; Formability ; Health aspects ; Humans ; Invasiveness ; Kinking ; Mathematical models ; Mechanical engineering ; Mechanical properties ; Membranes ; Models, Biological ; Nuclear Envelope - physiology ; Nuclei (cytology) ; Physical properties ; Physical Sciences ; Plane strain ; Plastic deformation ; Plasticity ; Plastics ; Softening ; Software ; Stiffening ; Stresses ; Viscoelasticity</subject><ispartof>PLoS computational biology, 2020-10, Vol.16 (10), p.e1008300-e1008300</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Mukherjee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Mukherjee et al 2020 Mukherjee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-1558eb7e7958b9bb379b0f368f3fb17eedf2a6363590fae9a924896807f176ef3</citedby><cites>FETCH-LOGICAL-c661t-1558eb7e7958b9bb379b0f368f3fb17eedf2a6363590fae9a924896807f176ef3</cites><orcidid>0000-0002-8639-8659 ; 0000-0002-7510-1645 ; 0000-0002-4021-4199 ; 0000-0001-9006-6270 ; 0000-0002-5275-8038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577492/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577492/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33035221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Discher, Dennis E.</contributor><creatorcontrib>Mukherjee, Abhishek</creatorcontrib><creatorcontrib>Barai, Amlan</creatorcontrib><creatorcontrib>Singh, Ramesh K</creatorcontrib><creatorcontrib>Yan, Wenyi</creatorcontrib><creatorcontrib>Sen, Shamik</creatorcontrib><title>Nuclear plasticity increases susceptibility to damage during confined migration</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage.</description><subject>Aerospace engineering</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement - physiology</subject><subject>Cell Nucleus - physiology</subject><subject>Confined spaces</subject><subject>Cytoskeleton</subject><subject>Damage</subject><subject>Deformation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>Fibrosarcoma</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Invasiveness</subject><subject>Kinking</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Nuclear Envelope - physiology</subject><subject>Nuclei (cytology)</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Plane strain</subject><subject>Plastic deformation</subject><subject>Plasticity</subject><subject>Plastics</subject><subject>Softening</subject><subject>Software</subject><subject>Stiffening</subject><subject>Stresses</subject><subject>Viscoelasticity</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4lIOu9jxK75UqqoCK1WtxONs2c44eJXEi50g-u1x2LTqol6QDx6Nf_Ofh6coXmO0xkTgD9swxUF36501fo0RqglCT4pjzBhZCcLqpw_so-JFSluEsin58-KIkGxWFT4ubq4n24GO5a7TafTWj7elH2wEnSCVaUoWdqM3vpsfxlA2utctlM0U_dCWNgzOD9CUvW-jHn0YXhbPnO4SvFruk-L7x8tvF59XVzefNhfnVyvLOR5XubIajAAhWW2kMURIgxzhtSPOYAHQuEpzwgmTyGmQWlY0l14j4bDg4MhJ8Xavu-tCUssskqooR0JUAtFMbPZEE_RW7aLvdbxVQXv11xFiq3TMHXegsG1Yhag2VU0od0xiSmtjOEGSusrVWetsyTaZHhoLwxh1dyB6-DL4H6oNv5RgQlBZZYHTRSCGnxOkUfU-j7br9ABhmuumUjIp5Zzr3T_o490tVKtzA35wIee1s6g655TlD67ZTK0fofJpoPf588D57D8IeH8QkJkRfo-tnlJSm69f_oO9PmTpnrUxpBTB3c8OIzWv812Tal5ntaxzDnvzcO73QXf7S_4AZmbwAw</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Mukherjee, Abhishek</creator><creator>Barai, Amlan</creator><creator>Singh, Ramesh K</creator><creator>Yan, Wenyi</creator><creator>Sen, Shamik</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8639-8659</orcidid><orcidid>https://orcid.org/0000-0002-7510-1645</orcidid><orcidid>https://orcid.org/0000-0002-4021-4199</orcidid><orcidid>https://orcid.org/0000-0001-9006-6270</orcidid><orcidid>https://orcid.org/0000-0002-5275-8038</orcidid></search><sort><creationdate>20201009</creationdate><title>Nuclear plasticity increases susceptibility to damage during confined migration</title><author>Mukherjee, Abhishek ; Barai, Amlan ; Singh, Ramesh K ; Yan, Wenyi ; Sen, Shamik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-1558eb7e7958b9bb379b0f368f3fb17eedf2a6363590fae9a924896807f176ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace engineering</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement - physiology</topic><topic>Cell Nucleus - physiology</topic><topic>Confined spaces</topic><topic>Cytoskeleton</topic><topic>Damage</topic><topic>Deformation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>Fibrosarcoma</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Invasiveness</topic><topic>Kinking</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Nuclear Envelope - physiology</topic><topic>Nuclei (cytology)</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Plane strain</topic><topic>Plastic deformation</topic><topic>Plasticity</topic><topic>Plastics</topic><topic>Softening</topic><topic>Software</topic><topic>Stiffening</topic><topic>Stresses</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Abhishek</creatorcontrib><creatorcontrib>Barai, Amlan</creatorcontrib><creatorcontrib>Singh, Ramesh K</creatorcontrib><creatorcontrib>Yan, Wenyi</creatorcontrib><creatorcontrib>Sen, Shamik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Abhishek</au><au>Barai, Amlan</au><au>Singh, Ramesh K</au><au>Yan, Wenyi</au><au>Sen, Shamik</au><au>Discher, Dennis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear plasticity increases susceptibility to damage during confined migration</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-10-09</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>e1008300</spage><epage>e1008300</epage><pages>e1008300-e1008300</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33035221</pmid><doi>10.1371/journal.pcbi.1008300</doi><orcidid>https://orcid.org/0000-0002-8639-8659</orcidid><orcidid>https://orcid.org/0000-0002-7510-1645</orcidid><orcidid>https://orcid.org/0000-0002-4021-4199</orcidid><orcidid>https://orcid.org/0000-0001-9006-6270</orcidid><orcidid>https://orcid.org/0000-0002-5275-8038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-10, Vol.16 (10), p.e1008300-e1008300
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2460772704
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Aerospace engineering
Bioengineering
Biology and Life Sciences
Cell adhesion & migration
Cell Line, Tumor
Cell migration
Cell Movement - physiology
Cell Nucleus - physiology
Confined spaces
Cytoskeleton
Damage
Deformation
Deoxyribonucleic acid
DNA
DNA Damage
Fibrosarcoma
Finite Element Analysis
Finite element method
Formability
Health aspects
Humans
Invasiveness
Kinking
Mathematical models
Mechanical engineering
Mechanical properties
Membranes
Models, Biological
Nuclear Envelope - physiology
Nuclei (cytology)
Physical properties
Physical Sciences
Plane strain
Plastic deformation
Plasticity
Plastics
Softening
Software
Stiffening
Stresses
Viscoelasticity
title Nuclear plasticity increases susceptibility to damage during confined migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20plasticity%20increases%20susceptibility%20to%20damage%20during%20confined%20migration&rft.jtitle=PLoS%20computational%20biology&rft.au=Mukherjee,%20Abhishek&rft.date=2020-10-09&rft.volume=16&rft.issue=10&rft.spage=e1008300&rft.epage=e1008300&rft.pages=e1008300-e1008300&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008300&rft_dat=%3Cgale_plos_%3EA645330854%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460772704&rft_id=info:pmid/33035221&rft_galeid=A645330854&rft_doaj_id=oai_doaj_org_article_1cd5204ab28346f591448bb63094f2f8&rfr_iscdi=true