Nuclear plasticity increases susceptibility to damage during confined migration
Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-10, Vol.16 (10), p.e1008300-e1008300 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008300 |
---|---|
container_issue | 10 |
container_start_page | e1008300 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Mukherjee, Abhishek Barai, Amlan Singh, Ramesh K Yan, Wenyi Sen, Shamik |
description | Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage. |
doi_str_mv | 10.1371/journal.pcbi.1008300 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460772704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645330854</galeid><doaj_id>oai_doaj_org_article_1cd5204ab28346f591448bb63094f2f8</doaj_id><sourcerecordid>A645330854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-1558eb7e7958b9bb379b0f368f3fb17eedf2a6363590fae9a924896807f176ef3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4lIOu9jxK75UqqoCK1WtxONs2c44eJXEi50g-u1x2LTqol6QDx6Nf_Ofh6coXmO0xkTgD9swxUF36501fo0RqglCT4pjzBhZCcLqpw_so-JFSluEsin58-KIkGxWFT4ubq4n24GO5a7TafTWj7elH2wEnSCVaUoWdqM3vpsfxlA2utctlM0U_dCWNgzOD9CUvW-jHn0YXhbPnO4SvFruk-L7x8tvF59XVzefNhfnVyvLOR5XubIajAAhWW2kMURIgxzhtSPOYAHQuEpzwgmTyGmQWlY0l14j4bDg4MhJ8Xavu-tCUssskqooR0JUAtFMbPZEE_RW7aLvdbxVQXv11xFiq3TMHXegsG1Yhag2VU0od0xiSmtjOEGSusrVWetsyTaZHhoLwxh1dyB6-DL4H6oNv5RgQlBZZYHTRSCGnxOkUfU-j7br9ABhmuumUjIp5Zzr3T_o490tVKtzA35wIee1s6g655TlD67ZTK0fofJpoPf588D57D8IeH8QkJkRfo-tnlJSm69f_oO9PmTpnrUxpBTB3c8OIzWv812Tal5ntaxzDnvzcO73QXf7S_4AZmbwAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460772704</pqid></control><display><type>article</type><title>Nuclear plasticity increases susceptibility to damage during confined migration</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Mukherjee, Abhishek ; Barai, Amlan ; Singh, Ramesh K ; Yan, Wenyi ; Sen, Shamik</creator><contributor>Discher, Dennis E.</contributor><creatorcontrib>Mukherjee, Abhishek ; Barai, Amlan ; Singh, Ramesh K ; Yan, Wenyi ; Sen, Shamik ; Discher, Dennis E.</creatorcontrib><description>Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008300</identifier><identifier>PMID: 33035221</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aerospace engineering ; Bioengineering ; Biology and Life Sciences ; Cell adhesion & migration ; Cell Line, Tumor ; Cell migration ; Cell Movement - physiology ; Cell Nucleus - physiology ; Confined spaces ; Cytoskeleton ; Damage ; Deformation ; Deoxyribonucleic acid ; DNA ; DNA Damage ; Fibrosarcoma ; Finite Element Analysis ; Finite element method ; Formability ; Health aspects ; Humans ; Invasiveness ; Kinking ; Mathematical models ; Mechanical engineering ; Mechanical properties ; Membranes ; Models, Biological ; Nuclear Envelope - physiology ; Nuclei (cytology) ; Physical properties ; Physical Sciences ; Plane strain ; Plastic deformation ; Plasticity ; Plastics ; Softening ; Software ; Stiffening ; Stresses ; Viscoelasticity</subject><ispartof>PLoS computational biology, 2020-10, Vol.16 (10), p.e1008300-e1008300</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Mukherjee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Mukherjee et al 2020 Mukherjee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-1558eb7e7958b9bb379b0f368f3fb17eedf2a6363590fae9a924896807f176ef3</citedby><cites>FETCH-LOGICAL-c661t-1558eb7e7958b9bb379b0f368f3fb17eedf2a6363590fae9a924896807f176ef3</cites><orcidid>0000-0002-8639-8659 ; 0000-0002-7510-1645 ; 0000-0002-4021-4199 ; 0000-0001-9006-6270 ; 0000-0002-5275-8038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577492/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577492/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33035221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Discher, Dennis E.</contributor><creatorcontrib>Mukherjee, Abhishek</creatorcontrib><creatorcontrib>Barai, Amlan</creatorcontrib><creatorcontrib>Singh, Ramesh K</creatorcontrib><creatorcontrib>Yan, Wenyi</creatorcontrib><creatorcontrib>Sen, Shamik</creatorcontrib><title>Nuclear plasticity increases susceptibility to damage during confined migration</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage.</description><subject>Aerospace engineering</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Cell adhesion & migration</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement - physiology</subject><subject>Cell Nucleus - physiology</subject><subject>Confined spaces</subject><subject>Cytoskeleton</subject><subject>Damage</subject><subject>Deformation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>Fibrosarcoma</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Invasiveness</subject><subject>Kinking</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Nuclear Envelope - physiology</subject><subject>Nuclei (cytology)</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Plane strain</subject><subject>Plastic deformation</subject><subject>Plasticity</subject><subject>Plastics</subject><subject>Softening</subject><subject>Software</subject><subject>Stiffening</subject><subject>Stresses</subject><subject>Viscoelasticity</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4lIOu9jxK75UqqoCK1WtxONs2c44eJXEi50g-u1x2LTqol6QDx6Nf_Ofh6coXmO0xkTgD9swxUF36501fo0RqglCT4pjzBhZCcLqpw_so-JFSluEsin58-KIkGxWFT4ubq4n24GO5a7TafTWj7elH2wEnSCVaUoWdqM3vpsfxlA2utctlM0U_dCWNgzOD9CUvW-jHn0YXhbPnO4SvFruk-L7x8tvF59XVzefNhfnVyvLOR5XubIajAAhWW2kMURIgxzhtSPOYAHQuEpzwgmTyGmQWlY0l14j4bDg4MhJ8Xavu-tCUssskqooR0JUAtFMbPZEE_RW7aLvdbxVQXv11xFiq3TMHXegsG1Yhag2VU0od0xiSmtjOEGSusrVWetsyTaZHhoLwxh1dyB6-DL4H6oNv5RgQlBZZYHTRSCGnxOkUfU-j7br9ABhmuumUjIp5Zzr3T_o490tVKtzA35wIee1s6g655TlD67ZTK0fofJpoPf588D57D8IeH8QkJkRfo-tnlJSm69f_oO9PmTpnrUxpBTB3c8OIzWv812Tal5ntaxzDnvzcO73QXf7S_4AZmbwAw</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Mukherjee, Abhishek</creator><creator>Barai, Amlan</creator><creator>Singh, Ramesh K</creator><creator>Yan, Wenyi</creator><creator>Sen, Shamik</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8639-8659</orcidid><orcidid>https://orcid.org/0000-0002-7510-1645</orcidid><orcidid>https://orcid.org/0000-0002-4021-4199</orcidid><orcidid>https://orcid.org/0000-0001-9006-6270</orcidid><orcidid>https://orcid.org/0000-0002-5275-8038</orcidid></search><sort><creationdate>20201009</creationdate><title>Nuclear plasticity increases susceptibility to damage during confined migration</title><author>Mukherjee, Abhishek ; Barai, Amlan ; Singh, Ramesh K ; Yan, Wenyi ; Sen, Shamik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-1558eb7e7958b9bb379b0f368f3fb17eedf2a6363590fae9a924896807f176ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace engineering</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Cell adhesion & migration</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement - physiology</topic><topic>Cell Nucleus - physiology</topic><topic>Confined spaces</topic><topic>Cytoskeleton</topic><topic>Damage</topic><topic>Deformation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>Fibrosarcoma</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Invasiveness</topic><topic>Kinking</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Nuclear Envelope - physiology</topic><topic>Nuclei (cytology)</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Plane strain</topic><topic>Plastic deformation</topic><topic>Plasticity</topic><topic>Plastics</topic><topic>Softening</topic><topic>Software</topic><topic>Stiffening</topic><topic>Stresses</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Abhishek</creatorcontrib><creatorcontrib>Barai, Amlan</creatorcontrib><creatorcontrib>Singh, Ramesh K</creatorcontrib><creatorcontrib>Yan, Wenyi</creatorcontrib><creatorcontrib>Sen, Shamik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Abhishek</au><au>Barai, Amlan</au><au>Singh, Ramesh K</au><au>Yan, Wenyi</au><au>Sen, Shamik</au><au>Discher, Dennis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear plasticity increases susceptibility to damage during confined migration</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-10-09</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>e1008300</spage><epage>e1008300</epage><pages>e1008300-e1008300</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33035221</pmid><doi>10.1371/journal.pcbi.1008300</doi><orcidid>https://orcid.org/0000-0002-8639-8659</orcidid><orcidid>https://orcid.org/0000-0002-7510-1645</orcidid><orcidid>https://orcid.org/0000-0002-4021-4199</orcidid><orcidid>https://orcid.org/0000-0001-9006-6270</orcidid><orcidid>https://orcid.org/0000-0002-5275-8038</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-10, Vol.16 (10), p.e1008300-e1008300 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2460772704 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Aerospace engineering Bioengineering Biology and Life Sciences Cell adhesion & migration Cell Line, Tumor Cell migration Cell Movement - physiology Cell Nucleus - physiology Confined spaces Cytoskeleton Damage Deformation Deoxyribonucleic acid DNA DNA Damage Fibrosarcoma Finite Element Analysis Finite element method Formability Health aspects Humans Invasiveness Kinking Mathematical models Mechanical engineering Mechanical properties Membranes Models, Biological Nuclear Envelope - physiology Nuclei (cytology) Physical properties Physical Sciences Plane strain Plastic deformation Plasticity Plastics Softening Software Stiffening Stresses Viscoelasticity |
title | Nuclear plasticity increases susceptibility to damage during confined migration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20plasticity%20increases%20susceptibility%20to%20damage%20during%20confined%20migration&rft.jtitle=PLoS%20computational%20biology&rft.au=Mukherjee,%20Abhishek&rft.date=2020-10-09&rft.volume=16&rft.issue=10&rft.spage=e1008300&rft.epage=e1008300&rft.pages=e1008300-e1008300&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008300&rft_dat=%3Cgale_plos_%3EA645330854%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460772704&rft_id=info:pmid/33035221&rft_galeid=A645330854&rft_doaj_id=oai_doaj_org_article_1cd5204ab28346f591448bb63094f2f8&rfr_iscdi=true |