Bayesian regression explains how human participants handle parameter uncertainty

Accumulating evidence indicates that the human brain copes with sensory uncertainty in accordance with Bayes' rule. However, it is unknown how humans make predictions when the generative model of the task at hand is described by uncertain parameters. Here, we tested whether and how humans take...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-05, Vol.16 (5), p.e1007886-e1007886
Hauptverfasser: Jegminat, Jannes, Jastrzębowska, Maya A, Pachai, Matthew V, Herzog, Michael H, Pfister, Jean-Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007886
container_issue 5
container_start_page e1007886
container_title PLoS computational biology
container_volume 16
creator Jegminat, Jannes
Jastrzębowska, Maya A
Pachai, Matthew V
Herzog, Michael H
Pfister, Jean-Pascal
description Accumulating evidence indicates that the human brain copes with sensory uncertainty in accordance with Bayes' rule. However, it is unknown how humans make predictions when the generative model of the task at hand is described by uncertain parameters. Here, we tested whether and how humans take parameter uncertainty into account in a regression task. Participants extrapolated a parabola from a limited number of noisy points, shown on a computer screen. The quadratic parameter was drawn from a bimodal prior distribution. We tested whether human observers take full advantage of the given information, including the likelihood of the quadratic parameter value given the observed points and the quadratic parameter's prior distribution. We compared human performance with Bayesian regression, which is the (Bayes) optimal solution to this problem, and three sub-optimal models, which are simpler to compute. Our results show that, under our specific experimental conditions, humans behave in a way that is consistent with Bayesian regression. Moreover, our results support the hypothesis that humans generate responses in a manner consistent with probability matching rather than Bayesian decision theory.
doi_str_mv 10.1371/journal.pcbi.1007886
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460759891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632940708</galeid><doaj_id>oai_doaj_org_article_9a04c411e5924d6bb678e693a761b6c8</doaj_id><sourcerecordid>A632940708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-db2f66a27658a3ed30097ea7bb95275c6ac158db114c2ae6b4d0b5f2fdfbef043</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyCIxAUOCf72-oJUKj4iVYD4OFu2dzZxtGsv9i40_x6nSasGcUE-2Bo_7zue8VTVU4wWmEr8ehOnFEy3GJz1C4yQrGtxrzrFnNO5pLy-f-d8Uj3KeYNQOSrxsDqhhBEsUX1afXlrtpC9CbMEqwQ5-xhmcDV0xoc8W8ffs_XUl9vBpNE7P5gwlrAJTQe7mOlhhDSbgoM0Fsm4fVw9aE2X4clhP6t-vH_3_eLj_PLzh-XF-eXcCUrHeWNJK4QhUvDaUGgoQkqCkdYqTiR3wjjM68ZizBwxICxrkOUtaZvWQosYPaue732HLmZ9aEbWhAkkuaoVLsRyTzTRbPSQfG_SVkfj9XUgppW-LqoDrQxijmEMXBHWCGuFrEEoaqTAVri6eL05ZJtsD42DMCbTHZke3wS_1qv4S0vClVS0GLw8GKT4c4I86t5nB11nAsRp927EBK2Z4gV98Rf67-oWe2plSgE-tLHkdWU10HsXA7S-xM8FJYqh8tVF8OpIUJgRrsaVmXLWy29f_4P9dMyyPetSzDlBe9sVjPRuUm-er3eTqg-TWmTP7nb0VnQzmvQPyKDmdA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460759891</pqid></control><display><type>article</type><title>Bayesian regression explains how human participants handle parameter uncertainty</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jegminat, Jannes ; Jastrzębowska, Maya A ; Pachai, Matthew V ; Herzog, Michael H ; Pfister, Jean-Pascal</creator><contributor>van den Berg, Ronald</contributor><creatorcontrib>Jegminat, Jannes ; Jastrzębowska, Maya A ; Pachai, Matthew V ; Herzog, Michael H ; Pfister, Jean-Pascal ; van den Berg, Ronald</creatorcontrib><description>Accumulating evidence indicates that the human brain copes with sensory uncertainty in accordance with Bayes' rule. However, it is unknown how humans make predictions when the generative model of the task at hand is described by uncertain parameters. Here, we tested whether and how humans take parameter uncertainty into account in a regression task. Participants extrapolated a parabola from a limited number of noisy points, shown on a computer screen. The quadratic parameter was drawn from a bimodal prior distribution. We tested whether human observers take full advantage of the given information, including the likelihood of the quadratic parameter value given the observed points and the quadratic parameter's prior distribution. We compared human performance with Bayesian regression, which is the (Bayes) optimal solution to this problem, and three sub-optimal models, which are simpler to compute. Our results show that, under our specific experimental conditions, humans behave in a way that is consistent with Bayesian regression. Moreover, our results support the hypothesis that humans generate responses in a manner consistent with probability matching rather than Bayesian decision theory.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007886</identifier><identifier>PMID: 32421708</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Bayesian analysis ; Behavior ; Biology and Life Sciences ; Brain research ; Computer and Information Sciences ; Decision Making ; Decision theory ; Feedback ; Human performance ; Humans ; Laboratories ; Life sciences ; Machine learning ; Mathematical models ; Models, Theoretical ; Neural networks ; Neurosciences ; Noise ; Observations ; Parameter estimation ; Parameter uncertainty ; Physical Sciences ; Physiology ; Psychological aspects ; Psychological research ; Regression ; Social Sciences ; Software ; Statistical analysis ; Task based instruction ; Uncertainty</subject><ispartof>PLoS computational biology, 2020-05, Vol.16 (5), p.e1007886-e1007886</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Jegminat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Jegminat et al 2020 Jegminat et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-db2f66a27658a3ed30097ea7bb95275c6ac158db114c2ae6b4d0b5f2fdfbef043</citedby><cites>FETCH-LOGICAL-c633t-db2f66a27658a3ed30097ea7bb95275c6ac158db114c2ae6b4d0b5f2fdfbef043</cites><orcidid>0000-0001-8245-2366 ; 0000-0003-4427-257X ; 0000-0002-1847-3389 ; 0000-0002-2273-2881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259793/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259793/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32421708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>van den Berg, Ronald</contributor><creatorcontrib>Jegminat, Jannes</creatorcontrib><creatorcontrib>Jastrzębowska, Maya A</creatorcontrib><creatorcontrib>Pachai, Matthew V</creatorcontrib><creatorcontrib>Herzog, Michael H</creatorcontrib><creatorcontrib>Pfister, Jean-Pascal</creatorcontrib><title>Bayesian regression explains how human participants handle parameter uncertainty</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Accumulating evidence indicates that the human brain copes with sensory uncertainty in accordance with Bayes' rule. However, it is unknown how humans make predictions when the generative model of the task at hand is described by uncertain parameters. Here, we tested whether and how humans take parameter uncertainty into account in a regression task. Participants extrapolated a parabola from a limited number of noisy points, shown on a computer screen. The quadratic parameter was drawn from a bimodal prior distribution. We tested whether human observers take full advantage of the given information, including the likelihood of the quadratic parameter value given the observed points and the quadratic parameter's prior distribution. We compared human performance with Bayesian regression, which is the (Bayes) optimal solution to this problem, and three sub-optimal models, which are simpler to compute. Our results show that, under our specific experimental conditions, humans behave in a way that is consistent with Bayesian regression. Moreover, our results support the hypothesis that humans generate responses in a manner consistent with probability matching rather than Bayesian decision theory.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Behavior</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Computer and Information Sciences</subject><subject>Decision Making</subject><subject>Decision theory</subject><subject>Feedback</subject><subject>Human performance</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Life sciences</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Noise</subject><subject>Observations</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Psychological aspects</subject><subject>Psychological research</subject><subject>Regression</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Task based instruction</subject><subject>Uncertainty</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyCIxAUOCf72-oJUKj4iVYD4OFu2dzZxtGsv9i40_x6nSasGcUE-2Bo_7zue8VTVU4wWmEr8ehOnFEy3GJz1C4yQrGtxrzrFnNO5pLy-f-d8Uj3KeYNQOSrxsDqhhBEsUX1afXlrtpC9CbMEqwQ5-xhmcDV0xoc8W8ffs_XUl9vBpNE7P5gwlrAJTQe7mOlhhDSbgoM0Fsm4fVw9aE2X4clhP6t-vH_3_eLj_PLzh-XF-eXcCUrHeWNJK4QhUvDaUGgoQkqCkdYqTiR3wjjM68ZizBwxICxrkOUtaZvWQosYPaue732HLmZ9aEbWhAkkuaoVLsRyTzTRbPSQfG_SVkfj9XUgppW-LqoDrQxijmEMXBHWCGuFrEEoaqTAVri6eL05ZJtsD42DMCbTHZke3wS_1qv4S0vClVS0GLw8GKT4c4I86t5nB11nAsRp927EBK2Z4gV98Rf67-oWe2plSgE-tLHkdWU10HsXA7S-xM8FJYqh8tVF8OpIUJgRrsaVmXLWy29f_4P9dMyyPetSzDlBe9sVjPRuUm-er3eTqg-TWmTP7nb0VnQzmvQPyKDmdA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Jegminat, Jannes</creator><creator>Jastrzębowska, Maya A</creator><creator>Pachai, Matthew V</creator><creator>Herzog, Michael H</creator><creator>Pfister, Jean-Pascal</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8245-2366</orcidid><orcidid>https://orcid.org/0000-0003-4427-257X</orcidid><orcidid>https://orcid.org/0000-0002-1847-3389</orcidid><orcidid>https://orcid.org/0000-0002-2273-2881</orcidid></search><sort><creationdate>20200501</creationdate><title>Bayesian regression explains how human participants handle parameter uncertainty</title><author>Jegminat, Jannes ; Jastrzębowska, Maya A ; Pachai, Matthew V ; Herzog, Michael H ; Pfister, Jean-Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-db2f66a27658a3ed30097ea7bb95275c6ac158db114c2ae6b4d0b5f2fdfbef043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Behavior</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Computer and Information Sciences</topic><topic>Decision Making</topic><topic>Decision theory</topic><topic>Feedback</topic><topic>Human performance</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Life sciences</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Noise</topic><topic>Observations</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Psychological aspects</topic><topic>Psychological research</topic><topic>Regression</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Task based instruction</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jegminat, Jannes</creatorcontrib><creatorcontrib>Jastrzębowska, Maya A</creatorcontrib><creatorcontrib>Pachai, Matthew V</creatorcontrib><creatorcontrib>Herzog, Michael H</creatorcontrib><creatorcontrib>Pfister, Jean-Pascal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jegminat, Jannes</au><au>Jastrzębowska, Maya A</au><au>Pachai, Matthew V</au><au>Herzog, Michael H</au><au>Pfister, Jean-Pascal</au><au>van den Berg, Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian regression explains how human participants handle parameter uncertainty</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>e1007886</spage><epage>e1007886</epage><pages>e1007886-e1007886</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Accumulating evidence indicates that the human brain copes with sensory uncertainty in accordance with Bayes' rule. However, it is unknown how humans make predictions when the generative model of the task at hand is described by uncertain parameters. Here, we tested whether and how humans take parameter uncertainty into account in a regression task. Participants extrapolated a parabola from a limited number of noisy points, shown on a computer screen. The quadratic parameter was drawn from a bimodal prior distribution. We tested whether human observers take full advantage of the given information, including the likelihood of the quadratic parameter value given the observed points and the quadratic parameter's prior distribution. We compared human performance with Bayesian regression, which is the (Bayes) optimal solution to this problem, and three sub-optimal models, which are simpler to compute. Our results show that, under our specific experimental conditions, humans behave in a way that is consistent with Bayesian regression. Moreover, our results support the hypothesis that humans generate responses in a manner consistent with probability matching rather than Bayesian decision theory.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32421708</pmid><doi>10.1371/journal.pcbi.1007886</doi><orcidid>https://orcid.org/0000-0001-8245-2366</orcidid><orcidid>https://orcid.org/0000-0003-4427-257X</orcidid><orcidid>https://orcid.org/0000-0002-1847-3389</orcidid><orcidid>https://orcid.org/0000-0002-2273-2881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-05, Vol.16 (5), p.e1007886-e1007886
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2460759891
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bayes Theorem
Bayesian analysis
Behavior
Biology and Life Sciences
Brain research
Computer and Information Sciences
Decision Making
Decision theory
Feedback
Human performance
Humans
Laboratories
Life sciences
Machine learning
Mathematical models
Models, Theoretical
Neural networks
Neurosciences
Noise
Observations
Parameter estimation
Parameter uncertainty
Physical Sciences
Physiology
Psychological aspects
Psychological research
Regression
Social Sciences
Software
Statistical analysis
Task based instruction
Uncertainty
title Bayesian regression explains how human participants handle parameter uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20regression%20explains%20how%20human%20participants%20handle%20parameter%20uncertainty&rft.jtitle=PLoS%20computational%20biology&rft.au=Jegminat,%20Jannes&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=e1007886&rft.epage=e1007886&rft.pages=e1007886-e1007886&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007886&rft_dat=%3Cgale_plos_%3EA632940708%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460759891&rft_id=info:pmid/32421708&rft_galeid=A632940708&rft_doaj_id=oai_doaj_org_article_9a04c411e5924d6bb678e693a761b6c8&rfr_iscdi=true