Stimulus-choice (mis)alignment in primate area MT

For stimuli near perceptual threshold, the trial-by-trial activity of single neurons in many sensory areas is correlated with the animal's perceptual report. This phenomenon has often been attributed to feedforward readout of the neural activity by the downstream decision-making circuits. The i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-05, Vol.16 (5), p.e1007614-e1007614
Hauptverfasser: Zhao, Yuan, Yates, Jacob L, Levi, Aaron J, Huk, Alexander C, Park, Il Memming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007614
container_issue 5
container_start_page e1007614
container_title PLoS computational biology
container_volume 16
creator Zhao, Yuan
Yates, Jacob L
Levi, Aaron J
Huk, Alexander C
Park, Il Memming
description For stimuli near perceptual threshold, the trial-by-trial activity of single neurons in many sensory areas is correlated with the animal's perceptual report. This phenomenon has often been attributed to feedforward readout of the neural activity by the downstream decision-making circuits. The interpretation of choice-correlated activity is quite ambiguous, but its meaning can be better understood in the light of population-wide correlations among sensory neurons. Using a statistical nonlinear dimensionality reduction technique on single-trial ensemble recordings from the middle temporal (MT) area during perceptual-decision-making, we extracted low-dimensional latent factors that captured the population-wide fluctuations. We dissected the particular contributions of sensory-driven versus choice-correlated activity in the low-dimensional population code. We found that the latent factors strongly encoded the direction of the stimulus in single dimension with a temporal signature similar to that of single MT neurons. If the downstream circuit were optimally utilizing this information, choice-correlated signals should be aligned with this stimulus encoding dimension. Surprisingly, we found that a large component of the choice information resides in the subspace orthogonal to the stimulus representation inconsistent with the optimal readout view. This misaligned choice information allows the feedforward sensory information to coexist with the decision-making process. The time course of these signals suggest that this misaligned contribution likely is feedback from the downstream areas. We hypothesize that this non-corrupting choice-correlated feedback might be related to learning or reinforcing sensory-motor relations in the sensory population.
doi_str_mv 10.1371/journal.pcbi.1007614
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460759888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632940711</galeid><doaj_id>oai_doaj_org_article_16303eaa77684a8282ac217723590fcf</doaj_id><sourcerecordid>A632940711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5084-63e1d2ef06fbd748b0d59dcc43af7291c8aac30769b15144e9392fa5cd31cae33</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIPuAPEIzEpiwy-P3YVKqqApWKWFDW1o1jTz1K4sFOkPh7nE5adVDlha3rc8895-pU1TuM1phK_HkbpzRAt97ZJqwxQlJg9qI6xpzTWlKuXj55H1UnOW8RKk8tXldHlDCCJRbHFf45hn7qplzbuxisW531IX-CLmyG3g3jKgyrXQo9jG4FycHq--2b6pWHLru3y31a_fpydXv5rb758fX68uKmthwpVgvqcEucR8I3rWSqQS3XrbWMgpdEY6sALC2qdYM5ZsxpqokHbluKLThKT6sPe95dF7NZ3GZDmECSa6VUQVzvEW2ErbmXmf6aCMHcF2LaGEhjsJ0zWFBEHYCUQjFQRBGwZQOSUK6Rt75wnS_TpqZ3rS3eE3QHpIc_Q7gzm_jHSFLEIF4IzhaCFH9PLo-mLNK6roPBxWnWjZigmvIZ-vE_6PPuFtQGioEw-Fjm2pnUXAhKNEMS44JaP4Mqp3V9sHFwPpT6QQPbN9gUc07OP3rEyMzBehBj5mCZJVil7f3T_Tw2PSSJ_gN7JMgn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460759888</pqid></control><display><type>article</type><title>Stimulus-choice (mis)alignment in primate area MT</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhao, Yuan ; Yates, Jacob L ; Levi, Aaron J ; Huk, Alexander C ; Park, Il Memming</creator><contributor>Marinazzo, Daniele</contributor><creatorcontrib>Zhao, Yuan ; Yates, Jacob L ; Levi, Aaron J ; Huk, Alexander C ; Park, Il Memming ; Marinazzo, Daniele</creatorcontrib><description>For stimuli near perceptual threshold, the trial-by-trial activity of single neurons in many sensory areas is correlated with the animal's perceptual report. This phenomenon has often been attributed to feedforward readout of the neural activity by the downstream decision-making circuits. The interpretation of choice-correlated activity is quite ambiguous, but its meaning can be better understood in the light of population-wide correlations among sensory neurons. Using a statistical nonlinear dimensionality reduction technique on single-trial ensemble recordings from the middle temporal (MT) area during perceptual-decision-making, we extracted low-dimensional latent factors that captured the population-wide fluctuations. We dissected the particular contributions of sensory-driven versus choice-correlated activity in the low-dimensional population code. We found that the latent factors strongly encoded the direction of the stimulus in single dimension with a temporal signature similar to that of single MT neurons. If the downstream circuit were optimally utilizing this information, choice-correlated signals should be aligned with this stimulus encoding dimension. Surprisingly, we found that a large component of the choice information resides in the subspace orthogonal to the stimulus representation inconsistent with the optimal readout view. This misaligned choice information allows the feedforward sensory information to coexist with the decision-making process. The time course of these signals suggest that this misaligned contribution likely is feedback from the downstream areas. We hypothesize that this non-corrupting choice-correlated feedback might be related to learning or reinforcing sensory-motor relations in the sensory population.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007614</identifier><identifier>PMID: 32421716</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animal care ; Animals ; Behavior ; Biology and Life Sciences ; Cerebral Cortex ; Choice Behavior - physiology ; Circuits ; Computational biology ; Control ; Correlation ; Decision making ; Decision Making - physiology ; Depth Perception - physiology ; Engineering and Technology ; Feedback ; Feedback, Sensory - physiology ; Female ; Hypotheses ; Information processing ; Macaca mulatta ; Male ; Management ; Medicine and Health Sciences ; Models, Theoretical ; Motor skill learning ; Neurobiology ; Neurons ; Neurosciences ; Noise ; Optimization ; Photic Stimulation - methods ; Physiological aspects ; Population ; Population (statistical) ; Primates ; Sensorimotor integration ; Sensory neurons ; Sensory Receptor Cells ; Signal processing ; Social Sciences ; Statistical analysis ; Stimuli (Psychology) ; Temporal Lobe - physiology ; Temporal lobes ; Visual Perception - physiology</subject><ispartof>PLoS computational biology, 2020-05, Vol.16 (5), p.e1007614-e1007614</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Zhao et al 2020 Zhao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5084-63e1d2ef06fbd748b0d59dcc43af7291c8aac30769b15144e9392fa5cd31cae33</citedby><cites>FETCH-LOGICAL-c5084-63e1d2ef06fbd748b0d59dcc43af7291c8aac30769b15144e9392fa5cd31cae33</cites><orcidid>0000-0001-8322-5982 ; 0000-0002-6123-8579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259805/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259805/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32421716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Marinazzo, Daniele</contributor><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Yates, Jacob L</creatorcontrib><creatorcontrib>Levi, Aaron J</creatorcontrib><creatorcontrib>Huk, Alexander C</creatorcontrib><creatorcontrib>Park, Il Memming</creatorcontrib><title>Stimulus-choice (mis)alignment in primate area MT</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>For stimuli near perceptual threshold, the trial-by-trial activity of single neurons in many sensory areas is correlated with the animal's perceptual report. This phenomenon has often been attributed to feedforward readout of the neural activity by the downstream decision-making circuits. The interpretation of choice-correlated activity is quite ambiguous, but its meaning can be better understood in the light of population-wide correlations among sensory neurons. Using a statistical nonlinear dimensionality reduction technique on single-trial ensemble recordings from the middle temporal (MT) area during perceptual-decision-making, we extracted low-dimensional latent factors that captured the population-wide fluctuations. We dissected the particular contributions of sensory-driven versus choice-correlated activity in the low-dimensional population code. We found that the latent factors strongly encoded the direction of the stimulus in single dimension with a temporal signature similar to that of single MT neurons. If the downstream circuit were optimally utilizing this information, choice-correlated signals should be aligned with this stimulus encoding dimension. Surprisingly, we found that a large component of the choice information resides in the subspace orthogonal to the stimulus representation inconsistent with the optimal readout view. This misaligned choice information allows the feedforward sensory information to coexist with the decision-making process. The time course of these signals suggest that this misaligned contribution likely is feedback from the downstream areas. We hypothesize that this non-corrupting choice-correlated feedback might be related to learning or reinforcing sensory-motor relations in the sensory population.</description><subject>Analysis</subject><subject>Animal care</subject><subject>Animals</subject><subject>Behavior</subject><subject>Biology and Life Sciences</subject><subject>Cerebral Cortex</subject><subject>Choice Behavior - physiology</subject><subject>Circuits</subject><subject>Computational biology</subject><subject>Control</subject><subject>Correlation</subject><subject>Decision making</subject><subject>Decision Making - physiology</subject><subject>Depth Perception - physiology</subject><subject>Engineering and Technology</subject><subject>Feedback</subject><subject>Feedback, Sensory - physiology</subject><subject>Female</subject><subject>Hypotheses</subject><subject>Information processing</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Management</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>Motor skill learning</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Noise</subject><subject>Optimization</subject><subject>Photic Stimulation - methods</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Primates</subject><subject>Sensorimotor integration</subject><subject>Sensory neurons</subject><subject>Sensory Receptor Cells</subject><subject>Signal processing</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>Stimuli (Psychology)</subject><subject>Temporal Lobe - physiology</subject><subject>Temporal lobes</subject><subject>Visual Perception - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIPuAPEIzEpiwy-P3YVKqqApWKWFDW1o1jTz1K4sFOkPh7nE5adVDlha3rc8895-pU1TuM1phK_HkbpzRAt97ZJqwxQlJg9qI6xpzTWlKuXj55H1UnOW8RKk8tXldHlDCCJRbHFf45hn7qplzbuxisW531IX-CLmyG3g3jKgyrXQo9jG4FycHq--2b6pWHLru3y31a_fpydXv5rb758fX68uKmthwpVgvqcEucR8I3rWSqQS3XrbWMgpdEY6sALC2qdYM5ZsxpqokHbluKLThKT6sPe95dF7NZ3GZDmECSa6VUQVzvEW2ErbmXmf6aCMHcF2LaGEhjsJ0zWFBEHYCUQjFQRBGwZQOSUK6Rt75wnS_TpqZ3rS3eE3QHpIc_Q7gzm_jHSFLEIF4IzhaCFH9PLo-mLNK6roPBxWnWjZigmvIZ-vE_6PPuFtQGioEw-Fjm2pnUXAhKNEMS44JaP4Mqp3V9sHFwPpT6QQPbN9gUc07OP3rEyMzBehBj5mCZJVil7f3T_Tw2PSSJ_gN7JMgn</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zhao, Yuan</creator><creator>Yates, Jacob L</creator><creator>Levi, Aaron J</creator><creator>Huk, Alexander C</creator><creator>Park, Il Memming</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8322-5982</orcidid><orcidid>https://orcid.org/0000-0002-6123-8579</orcidid></search><sort><creationdate>20200501</creationdate><title>Stimulus-choice (mis)alignment in primate area MT</title><author>Zhao, Yuan ; Yates, Jacob L ; Levi, Aaron J ; Huk, Alexander C ; Park, Il Memming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5084-63e1d2ef06fbd748b0d59dcc43af7291c8aac30769b15144e9392fa5cd31cae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Animal care</topic><topic>Animals</topic><topic>Behavior</topic><topic>Biology and Life Sciences</topic><topic>Cerebral Cortex</topic><topic>Choice Behavior - physiology</topic><topic>Circuits</topic><topic>Computational biology</topic><topic>Control</topic><topic>Correlation</topic><topic>Decision making</topic><topic>Decision Making - physiology</topic><topic>Depth Perception - physiology</topic><topic>Engineering and Technology</topic><topic>Feedback</topic><topic>Feedback, Sensory - physiology</topic><topic>Female</topic><topic>Hypotheses</topic><topic>Information processing</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Management</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>Motor skill learning</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Noise</topic><topic>Optimization</topic><topic>Photic Stimulation - methods</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Primates</topic><topic>Sensorimotor integration</topic><topic>Sensory neurons</topic><topic>Sensory Receptor Cells</topic><topic>Signal processing</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>Stimuli (Psychology)</topic><topic>Temporal Lobe - physiology</topic><topic>Temporal lobes</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Yates, Jacob L</creatorcontrib><creatorcontrib>Levi, Aaron J</creatorcontrib><creatorcontrib>Huk, Alexander C</creatorcontrib><creatorcontrib>Park, Il Memming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuan</au><au>Yates, Jacob L</au><au>Levi, Aaron J</au><au>Huk, Alexander C</au><au>Park, Il Memming</au><au>Marinazzo, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulus-choice (mis)alignment in primate area MT</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>e1007614</spage><epage>e1007614</epage><pages>e1007614-e1007614</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>For stimuli near perceptual threshold, the trial-by-trial activity of single neurons in many sensory areas is correlated with the animal's perceptual report. This phenomenon has often been attributed to feedforward readout of the neural activity by the downstream decision-making circuits. The interpretation of choice-correlated activity is quite ambiguous, but its meaning can be better understood in the light of population-wide correlations among sensory neurons. Using a statistical nonlinear dimensionality reduction technique on single-trial ensemble recordings from the middle temporal (MT) area during perceptual-decision-making, we extracted low-dimensional latent factors that captured the population-wide fluctuations. We dissected the particular contributions of sensory-driven versus choice-correlated activity in the low-dimensional population code. We found that the latent factors strongly encoded the direction of the stimulus in single dimension with a temporal signature similar to that of single MT neurons. If the downstream circuit were optimally utilizing this information, choice-correlated signals should be aligned with this stimulus encoding dimension. Surprisingly, we found that a large component of the choice information resides in the subspace orthogonal to the stimulus representation inconsistent with the optimal readout view. This misaligned choice information allows the feedforward sensory information to coexist with the decision-making process. The time course of these signals suggest that this misaligned contribution likely is feedback from the downstream areas. We hypothesize that this non-corrupting choice-correlated feedback might be related to learning or reinforcing sensory-motor relations in the sensory population.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32421716</pmid><doi>10.1371/journal.pcbi.1007614</doi><orcidid>https://orcid.org/0000-0001-8322-5982</orcidid><orcidid>https://orcid.org/0000-0002-6123-8579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-05, Vol.16 (5), p.e1007614-e1007614
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2460759888
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Animal care
Animals
Behavior
Biology and Life Sciences
Cerebral Cortex
Choice Behavior - physiology
Circuits
Computational biology
Control
Correlation
Decision making
Decision Making - physiology
Depth Perception - physiology
Engineering and Technology
Feedback
Feedback, Sensory - physiology
Female
Hypotheses
Information processing
Macaca mulatta
Male
Management
Medicine and Health Sciences
Models, Theoretical
Motor skill learning
Neurobiology
Neurons
Neurosciences
Noise
Optimization
Photic Stimulation - methods
Physiological aspects
Population
Population (statistical)
Primates
Sensorimotor integration
Sensory neurons
Sensory Receptor Cells
Signal processing
Social Sciences
Statistical analysis
Stimuli (Psychology)
Temporal Lobe - physiology
Temporal lobes
Visual Perception - physiology
title Stimulus-choice (mis)alignment in primate area MT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulus-choice%20(mis)alignment%20in%20primate%20area%20MT&rft.jtitle=PLoS%20computational%20biology&rft.au=Zhao,%20Yuan&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=e1007614&rft.epage=e1007614&rft.pages=e1007614-e1007614&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007614&rft_dat=%3Cgale_plos_%3EA632940711%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460759888&rft_id=info:pmid/32421716&rft_galeid=A632940711&rft_doaj_id=oai_doaj_org_article_16303eaa77684a8282ac217723590fcf&rfr_iscdi=true