Compositional Lotka-Volterra describes microbial dynamics in the simplex

Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-05, Vol.16 (5), p.e1007917-e1007917
Hauptverfasser: Joseph, Tyler A, Shenhav, Liat, Xavier, Joao B, Halperin, Eran, Pe'er, Itsik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007917
container_issue 5
container_start_page e1007917
container_title PLoS computational biology
container_volume 16
creator Joseph, Tyler A
Shenhav, Liat
Xavier, Joao B
Halperin, Eran
Pe'er, Itsik
description Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed "compositional" Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature-a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances-and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.
doi_str_mv 10.1371/journal.pcbi.1007917
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460759848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632940685</galeid><doaj_id>oai_doaj_org_article_5240174de84743169bdf1c704a15c5ff</doaj_id><sourcerecordid>A632940685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-656f9c12e900f3683356d175c5d1a860ae3d28d361e3cacb0f33d329b972b11d3</originalsourceid><addsrcrecordid>eNqVkstu1DAUhiMEoqXwBggisYFFBju-b5CqEdCRRiBx21qO7Uw9JHGwPah9exwmrRrUDfLCt-_8x-f4L4rnEKwgYvDt3h_CoLrVqBu3ggAwAdmD4hQSgiqGCH94Z31SPIlxD0BeCvq4OEE1poJTdlpcrH0_-uiS81ms3Pr0U1U_fJdsCKo0NurgGhvL3ungG5cRcz2ovIulG8p0acvo-rGzV0-LR63qon02z2fF9w_vv60vqu3nj5v1-bbSlMJUUUJboWFtBQAtohwhQg1kRBMDFadAWWRqbhCFFmmlmwwhg2rRCFY3EBp0Vrw86o6dj3JuQpS5IMCI4JhnYnMkjFd7OQbXq3AtvXLy74EPO6lCcrqzktQYQIaN5ZhhBKloTAs1A1jB_KK2zVrv5myHprdG2yEF1S1ElzeDu5Q7_1syVBOOSRZ4PQsE_-tgY5K9i9p2nRqsP0zvBhwKCojI6Kt_0Purm6mdygW4ofU5r55E5TnNjcKA8int6h4qD2Pz3_nBti6fLwLeLAIyk-xV2qlDjHLz9ct_sJ-WLD6y2T4xBtve9g4COfn4pkg5-VjOPs5hL-72_TboxrjoD0sw7QU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460759848</pqid></control><display><type>article</type><title>Compositional Lotka-Volterra describes microbial dynamics in the simplex</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Joseph, Tyler A ; Shenhav, Liat ; Xavier, Joao B ; Halperin, Eran ; Pe'er, Itsik</creator><contributor>Dakos, Vasilis</contributor><creatorcontrib>Joseph, Tyler A ; Shenhav, Liat ; Xavier, Joao B ; Halperin, Eran ; Pe'er, Itsik ; Dakos, Vasilis</creatorcontrib><description>Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed "compositional" Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature-a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances-and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007917</identifier><identifier>PMID: 32469867</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Clostridioides difficile - physiology ; Community ecology ; Computer and Information Sciences ; Computer science ; Data analysis ; Datasets ; Dynamics (Mechanics) ; Ecology and Environmental Sciences ; Investigations ; Medicine and Health Sciences ; Microbial activity ; Microbial colonies ; Microbiota ; Microorganisms ; Models, Biological ; Nonlinear differential equations ; Physical Sciences ; Predation (Biology) ; Proof of Concept Study ; Relative abundance ; Research and Analysis Methods ; System theory</subject><ispartof>PLoS computational biology, 2020-05, Vol.16 (5), p.e1007917-e1007917</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Joseph et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Joseph et al 2020 Joseph et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-656f9c12e900f3683356d175c5d1a860ae3d28d361e3cacb0f33d329b972b11d3</citedby><cites>FETCH-LOGICAL-c661t-656f9c12e900f3683356d175c5d1a860ae3d28d361e3cacb0f33d329b972b11d3</cites><orcidid>0000-0002-6128-7231 ; 0000-0003-3592-1689 ; 0000-0003-1708-6050 ; 0000-0001-6013-7285 ; 0000-0002-2373-3691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325845/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325845/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32469867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dakos, Vasilis</contributor><creatorcontrib>Joseph, Tyler A</creatorcontrib><creatorcontrib>Shenhav, Liat</creatorcontrib><creatorcontrib>Xavier, Joao B</creatorcontrib><creatorcontrib>Halperin, Eran</creatorcontrib><creatorcontrib>Pe'er, Itsik</creatorcontrib><title>Compositional Lotka-Volterra describes microbial dynamics in the simplex</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed "compositional" Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature-a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances-and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Clostridioides difficile - physiology</subject><subject>Community ecology</subject><subject>Computer and Information Sciences</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Dynamics (Mechanics)</subject><subject>Ecology and Environmental Sciences</subject><subject>Investigations</subject><subject>Medicine and Health Sciences</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Models, Biological</subject><subject>Nonlinear differential equations</subject><subject>Physical Sciences</subject><subject>Predation (Biology)</subject><subject>Proof of Concept Study</subject><subject>Relative abundance</subject><subject>Research and Analysis Methods</subject><subject>System theory</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstu1DAUhiMEoqXwBggisYFFBju-b5CqEdCRRiBx21qO7Uw9JHGwPah9exwmrRrUDfLCt-_8x-f4L4rnEKwgYvDt3h_CoLrVqBu3ggAwAdmD4hQSgiqGCH94Z31SPIlxD0BeCvq4OEE1poJTdlpcrH0_-uiS81ms3Pr0U1U_fJdsCKo0NurgGhvL3ungG5cRcz2ovIulG8p0acvo-rGzV0-LR63qon02z2fF9w_vv60vqu3nj5v1-bbSlMJUUUJboWFtBQAtohwhQg1kRBMDFadAWWRqbhCFFmmlmwwhg2rRCFY3EBp0Vrw86o6dj3JuQpS5IMCI4JhnYnMkjFd7OQbXq3AtvXLy74EPO6lCcrqzktQYQIaN5ZhhBKloTAs1A1jB_KK2zVrv5myHprdG2yEF1S1ElzeDu5Q7_1syVBOOSRZ4PQsE_-tgY5K9i9p2nRqsP0zvBhwKCojI6Kt_0Purm6mdygW4ofU5r55E5TnNjcKA8int6h4qD2Pz3_nBti6fLwLeLAIyk-xV2qlDjHLz9ct_sJ-WLD6y2T4xBtve9g4COfn4pkg5-VjOPs5hL-72_TboxrjoD0sw7QU</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Joseph, Tyler A</creator><creator>Shenhav, Liat</creator><creator>Xavier, Joao B</creator><creator>Halperin, Eran</creator><creator>Pe'er, Itsik</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6128-7231</orcidid><orcidid>https://orcid.org/0000-0003-3592-1689</orcidid><orcidid>https://orcid.org/0000-0003-1708-6050</orcidid><orcidid>https://orcid.org/0000-0001-6013-7285</orcidid><orcidid>https://orcid.org/0000-0002-2373-3691</orcidid></search><sort><creationdate>20200501</creationdate><title>Compositional Lotka-Volterra describes microbial dynamics in the simplex</title><author>Joseph, Tyler A ; Shenhav, Liat ; Xavier, Joao B ; Halperin, Eran ; Pe'er, Itsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-656f9c12e900f3683356d175c5d1a860ae3d28d361e3cacb0f33d329b972b11d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Clostridioides difficile - physiology</topic><topic>Community ecology</topic><topic>Computer and Information Sciences</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Dynamics (Mechanics)</topic><topic>Ecology and Environmental Sciences</topic><topic>Investigations</topic><topic>Medicine and Health Sciences</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Models, Biological</topic><topic>Nonlinear differential equations</topic><topic>Physical Sciences</topic><topic>Predation (Biology)</topic><topic>Proof of Concept Study</topic><topic>Relative abundance</topic><topic>Research and Analysis Methods</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, Tyler A</creatorcontrib><creatorcontrib>Shenhav, Liat</creatorcontrib><creatorcontrib>Xavier, Joao B</creatorcontrib><creatorcontrib>Halperin, Eran</creatorcontrib><creatorcontrib>Pe'er, Itsik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, Tyler A</au><au>Shenhav, Liat</au><au>Xavier, Joao B</au><au>Halperin, Eran</au><au>Pe'er, Itsik</au><au>Dakos, Vasilis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional Lotka-Volterra describes microbial dynamics in the simplex</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>e1007917</spage><epage>e1007917</epage><pages>e1007917-e1007917</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed "compositional" Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature-a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances-and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32469867</pmid><doi>10.1371/journal.pcbi.1007917</doi><orcidid>https://orcid.org/0000-0002-6128-7231</orcidid><orcidid>https://orcid.org/0000-0003-3592-1689</orcidid><orcidid>https://orcid.org/0000-0003-1708-6050</orcidid><orcidid>https://orcid.org/0000-0001-6013-7285</orcidid><orcidid>https://orcid.org/0000-0002-2373-3691</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-05, Vol.16 (5), p.e1007917-e1007917
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2460759848
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Analysis
Biology and Life Sciences
Clostridioides difficile - physiology
Community ecology
Computer and Information Sciences
Computer science
Data analysis
Datasets
Dynamics (Mechanics)
Ecology and Environmental Sciences
Investigations
Medicine and Health Sciences
Microbial activity
Microbial colonies
Microbiota
Microorganisms
Models, Biological
Nonlinear differential equations
Physical Sciences
Predation (Biology)
Proof of Concept Study
Relative abundance
Research and Analysis Methods
System theory
title Compositional Lotka-Volterra describes microbial dynamics in the simplex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20Lotka-Volterra%20describes%20microbial%20dynamics%20in%20the%20simplex&rft.jtitle=PLoS%20computational%20biology&rft.au=Joseph,%20Tyler%20A&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=e1007917&rft.epage=e1007917&rft.pages=e1007917-e1007917&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007917&rft_dat=%3Cgale_plos_%3EA632940685%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460759848&rft_id=info:pmid/32469867&rft_galeid=A632940685&rft_doaj_id=oai_doaj_org_article_5240174de84743169bdf1c704a15c5ff&rfr_iscdi=true