Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis

Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-05, Vol.16 (5), p.e1007797
Hauptverfasser: Brucker, Amanda, Lu, Wenbin, Marceau West, Rachel, Yu, Qi-You, Hsiao, Chuhsing Kate, Hsiao, Tzu-Hung, Lin, Ching-Heng, Magnusson, Patrik K E, Sullivan, Patrick F, Szatkiewicz, Jin P, Lu, Tzu-Pin, Tzeng, Jung-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e1007797
container_title PLoS computational biology
container_volume 16
creator Brucker, Amanda
Lu, Wenbin
Marceau West, Rachel
Yu, Qi-You
Hsiao, Chuhsing Kate
Hsiao, Tzu-Hung
Lin, Ching-Heng
Magnusson, Patrik K E
Sullivan, Patrick F
Szatkiewicz, Jin P
Lu, Tzu-Pin
Tzeng, Jung-Ying
description Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.
doi_str_mv 10.1371/journal.pcbi.1007797
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460759839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632940719</galeid><doaj_id>oai_doaj_org_article_88a8bc6a56c04085b78960c936494bce</doaj_id><sourcerecordid>A632940719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-5d89d657638e5298c6bfe46996240018801b7f7b22ddd16af64a1ecae9d32fd93</originalsourceid><addsrcrecordid>eNp1Uk1v1DAQjRCIloV_gCASFzhksePvC9Iq4qNS1SJEz5bjOFsvWTu1k6323-OQtOoekA8ejd97njczWfYWgjVEDH7e-TE41a17Xds1BIAxwZ5l55AQVDBE-PMn8Vn2KsYdACkU9GV2hkpECeDiPHObGL22arDe5YOJQz5G67Z55ftjfjXuaxPyn8G3tjN5NYaDifnH6vqquvn1KTfuVjmdMr2_TzDr8qCCyfVEdTP1oIJVbshVqvQYbXydvWhVF82b5V5lN9--_q5-FJfX3y-qzWWhKUBDQRouGkoYRdyQUnBN69ZgKgQtMQCQcwBr1rK6LJumgVS1FCtotDKiQWXbCLTK3s-6feejXFoVZYkpYERwNCEuZkTj1U72we5VOEqvrPyX8GErVRis7ozkXPFaU0WoBhhwUrPURaAFoljgWpukVcxa8d70Y32itqT-pMhIzCBJBlfZl6W6sd6bRhs3BNWd0E5fnL2VW3-QrCwxoTgJfFgEgr8b09T-Y3E9o7YqubCu9UlMp9OYvdXemWmqckNRKTBgcCLgmaCDjzGY9rEkCOS0dA_fyGnp5LJ0ifbuqZ1H0sOWob81ddYb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460759839</pqid></control><display><type>article</type><title>Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><creator>Brucker, Amanda ; Lu, Wenbin ; Marceau West, Rachel ; Yu, Qi-You ; Hsiao, Chuhsing Kate ; Hsiao, Tzu-Hung ; Lin, Ching-Heng ; Magnusson, Patrik K E ; Sullivan, Patrick F ; Szatkiewicz, Jin P ; Lu, Tzu-Pin ; Tzeng, Jung-Ying</creator><creatorcontrib>Brucker, Amanda ; Lu, Wenbin ; Marceau West, Rachel ; Yu, Qi-You ; Hsiao, Chuhsing Kate ; Hsiao, Tzu-Hung ; Lin, Ching-Heng ; Magnusson, Patrik K E ; Sullivan, Patrick F ; Szatkiewicz, Jin P ; Lu, Tzu-Pin ; Tzeng, Jung-Ying</creatorcontrib><description>Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007797</identifier><identifier>PMID: 32365089</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Area Under Curve ; Biology and Life Sciences ; Computational Biology - methods ; Copy number ; Copy number variations ; Deoxyribonucleic acid ; DNA ; DNA Copy Number Variations - genetics ; Dosage ; Drug dosages ; Epidemiology ; Etiology ; Genetic Predisposition to Disease - genetics ; Genetic Variation - genetics ; Genome, Human - genetics ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Genomics - methods ; Heterogeneity ; Humans ; Kernel functions ; Kernels ; Loci ; Medical research ; Medicine and Health Sciences ; Mental disorders ; Methods ; Phenotypes ; Physical Sciences ; Polymorphism, Single Nucleotide - genetics ; Preventive medicine ; Research and Analysis Methods ; Schizophrenia ; Software ; Spatial Analysis</subject><ispartof>PLoS computational biology, 2020-05, Vol.16 (5), p.e1007797</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Brucker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Brucker et al 2020 Brucker et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-5d89d657638e5298c6bfe46996240018801b7f7b22ddd16af64a1ecae9d32fd93</citedby><cites>FETCH-LOGICAL-c603t-5d89d657638e5298c6bfe46996240018801b7f7b22ddd16af64a1ecae9d32fd93</cites><orcidid>0000-0003-4905-8484 ; 0000-0002-9966-3001 ; 0000-0002-5505-1775 ; 0000-0002-7315-7899 ; 0000-0003-3697-0386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224564/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224564/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32365089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:143865315$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Brucker, Amanda</creatorcontrib><creatorcontrib>Lu, Wenbin</creatorcontrib><creatorcontrib>Marceau West, Rachel</creatorcontrib><creatorcontrib>Yu, Qi-You</creatorcontrib><creatorcontrib>Hsiao, Chuhsing Kate</creatorcontrib><creatorcontrib>Hsiao, Tzu-Hung</creatorcontrib><creatorcontrib>Lin, Ching-Heng</creatorcontrib><creatorcontrib>Magnusson, Patrik K E</creatorcontrib><creatorcontrib>Sullivan, Patrick F</creatorcontrib><creatorcontrib>Szatkiewicz, Jin P</creatorcontrib><creatorcontrib>Lu, Tzu-Pin</creatorcontrib><creatorcontrib>Tzeng, Jung-Ying</creatorcontrib><title>Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Area Under Curve</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology - methods</subject><subject>Copy number</subject><subject>Copy number variations</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Copy Number Variations - genetics</subject><subject>Dosage</subject><subject>Drug dosages</subject><subject>Epidemiology</subject><subject>Etiology</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genetic Variation - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Kernel functions</subject><subject>Kernels</subject><subject>Loci</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mental disorders</subject><subject>Methods</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Preventive medicine</subject><subject>Research and Analysis Methods</subject><subject>Schizophrenia</subject><subject>Software</subject><subject>Spatial Analysis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1v1DAQjRCIloV_gCASFzhksePvC9Iq4qNS1SJEz5bjOFsvWTu1k6323-OQtOoekA8ejd97njczWfYWgjVEDH7e-TE41a17Xds1BIAxwZ5l55AQVDBE-PMn8Vn2KsYdACkU9GV2hkpECeDiPHObGL22arDe5YOJQz5G67Z55ftjfjXuaxPyn8G3tjN5NYaDifnH6vqquvn1KTfuVjmdMr2_TzDr8qCCyfVEdTP1oIJVbshVqvQYbXydvWhVF82b5V5lN9--_q5-FJfX3y-qzWWhKUBDQRouGkoYRdyQUnBN69ZgKgQtMQCQcwBr1rK6LJumgVS1FCtotDKiQWXbCLTK3s-6feejXFoVZYkpYERwNCEuZkTj1U72we5VOEqvrPyX8GErVRis7ozkXPFaU0WoBhhwUrPURaAFoljgWpukVcxa8d70Y32itqT-pMhIzCBJBlfZl6W6sd6bRhs3BNWd0E5fnL2VW3-QrCwxoTgJfFgEgr8b09T-Y3E9o7YqubCu9UlMp9OYvdXemWmqckNRKTBgcCLgmaCDjzGY9rEkCOS0dA_fyGnp5LJ0ifbuqZ1H0sOWob81ddYb</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Brucker, Amanda</creator><creator>Lu, Wenbin</creator><creator>Marceau West, Rachel</creator><creator>Yu, Qi-You</creator><creator>Hsiao, Chuhsing Kate</creator><creator>Hsiao, Tzu-Hung</creator><creator>Lin, Ching-Heng</creator><creator>Magnusson, Patrik K E</creator><creator>Sullivan, Patrick F</creator><creator>Szatkiewicz, Jin P</creator><creator>Lu, Tzu-Pin</creator><creator>Tzeng, Jung-Ying</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4905-8484</orcidid><orcidid>https://orcid.org/0000-0002-9966-3001</orcidid><orcidid>https://orcid.org/0000-0002-5505-1775</orcidid><orcidid>https://orcid.org/0000-0002-7315-7899</orcidid><orcidid>https://orcid.org/0000-0003-3697-0386</orcidid></search><sort><creationdate>20200501</creationdate><title>Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis</title><author>Brucker, Amanda ; Lu, Wenbin ; Marceau West, Rachel ; Yu, Qi-You ; Hsiao, Chuhsing Kate ; Hsiao, Tzu-Hung ; Lin, Ching-Heng ; Magnusson, Patrik K E ; Sullivan, Patrick F ; Szatkiewicz, Jin P ; Lu, Tzu-Pin ; Tzeng, Jung-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-5d89d657638e5298c6bfe46996240018801b7f7b22ddd16af64a1ecae9d32fd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Area Under Curve</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology - methods</topic><topic>Copy number</topic><topic>Copy number variations</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Copy Number Variations - genetics</topic><topic>Dosage</topic><topic>Drug dosages</topic><topic>Epidemiology</topic><topic>Etiology</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genetic Variation - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Kernel functions</topic><topic>Kernels</topic><topic>Loci</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mental disorders</topic><topic>Methods</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Preventive medicine</topic><topic>Research and Analysis Methods</topic><topic>Schizophrenia</topic><topic>Software</topic><topic>Spatial Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brucker, Amanda</creatorcontrib><creatorcontrib>Lu, Wenbin</creatorcontrib><creatorcontrib>Marceau West, Rachel</creatorcontrib><creatorcontrib>Yu, Qi-You</creatorcontrib><creatorcontrib>Hsiao, Chuhsing Kate</creatorcontrib><creatorcontrib>Hsiao, Tzu-Hung</creatorcontrib><creatorcontrib>Lin, Ching-Heng</creatorcontrib><creatorcontrib>Magnusson, Patrik K E</creatorcontrib><creatorcontrib>Sullivan, Patrick F</creatorcontrib><creatorcontrib>Szatkiewicz, Jin P</creatorcontrib><creatorcontrib>Lu, Tzu-Pin</creatorcontrib><creatorcontrib>Tzeng, Jung-Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brucker, Amanda</au><au>Lu, Wenbin</au><au>Marceau West, Rachel</au><au>Yu, Qi-You</au><au>Hsiao, Chuhsing Kate</au><au>Hsiao, Tzu-Hung</au><au>Lin, Ching-Heng</au><au>Magnusson, Patrik K E</au><au>Sullivan, Patrick F</au><au>Szatkiewicz, Jin P</au><au>Lu, Tzu-Pin</au><au>Tzeng, Jung-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>e1007797</spage><pages>e1007797-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32365089</pmid><doi>10.1371/journal.pcbi.1007797</doi><orcidid>https://orcid.org/0000-0003-4905-8484</orcidid><orcidid>https://orcid.org/0000-0002-9966-3001</orcidid><orcidid>https://orcid.org/0000-0002-5505-1775</orcidid><orcidid>https://orcid.org/0000-0002-7315-7899</orcidid><orcidid>https://orcid.org/0000-0003-3697-0386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-05, Vol.16 (5), p.e1007797
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2460759839
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Public Library of Science (PLoS)
subjects Algorithms
Analysis
Area Under Curve
Biology and Life Sciences
Computational Biology - methods
Copy number
Copy number variations
Deoxyribonucleic acid
DNA
DNA Copy Number Variations - genetics
Dosage
Drug dosages
Epidemiology
Etiology
Genetic Predisposition to Disease - genetics
Genetic Variation - genetics
Genome, Human - genetics
Genome-Wide Association Study - methods
Genomes
Genomics
Genomics - methods
Heterogeneity
Humans
Kernel functions
Kernels
Loci
Medical research
Medicine and Health Sciences
Mental disorders
Methods
Phenotypes
Physical Sciences
Polymorphism, Single Nucleotide - genetics
Preventive medicine
Research and Analysis Methods
Schizophrenia
Software
Spatial Analysis
title Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20test%20using%20Copy%20Number%20Profile%20Curves%20(CONCUR)%20enhances%20power%20in%20rare%20copy%20number%20variant%20analysis&rft.jtitle=PLoS%20computational%20biology&rft.au=Brucker,%20Amanda&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=e1007797&rft.pages=e1007797-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007797&rft_dat=%3Cgale_plos_%3EA632940719%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460759839&rft_id=info:pmid/32365089&rft_galeid=A632940719&rft_doaj_id=oai_doaj_org_article_88a8bc6a56c04085b78960c936494bce&rfr_iscdi=true