Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis
Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-05, Vol.16 (5), p.e1007797 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e1007797 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Brucker, Amanda Lu, Wenbin Marceau West, Rachel Yu, Qi-You Hsiao, Chuhsing Kate Hsiao, Tzu-Hung Lin, Ching-Heng Magnusson, Patrik K E Sullivan, Patrick F Szatkiewicz, Jin P Lu, Tzu-Pin Tzeng, Jung-Ying |
description | Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank. |
doi_str_mv | 10.1371/journal.pcbi.1007797 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460759839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632940719</galeid><doaj_id>oai_doaj_org_article_88a8bc6a56c04085b78960c936494bce</doaj_id><sourcerecordid>A632940719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-5d89d657638e5298c6bfe46996240018801b7f7b22ddd16af64a1ecae9d32fd93</originalsourceid><addsrcrecordid>eNp1Uk1v1DAQjRCIloV_gCASFzhksePvC9Iq4qNS1SJEz5bjOFsvWTu1k6323-OQtOoekA8ejd97njczWfYWgjVEDH7e-TE41a17Xds1BIAxwZ5l55AQVDBE-PMn8Vn2KsYdACkU9GV2hkpECeDiPHObGL22arDe5YOJQz5G67Z55ftjfjXuaxPyn8G3tjN5NYaDifnH6vqquvn1KTfuVjmdMr2_TzDr8qCCyfVEdTP1oIJVbshVqvQYbXydvWhVF82b5V5lN9--_q5-FJfX3y-qzWWhKUBDQRouGkoYRdyQUnBN69ZgKgQtMQCQcwBr1rK6LJumgVS1FCtotDKiQWXbCLTK3s-6feejXFoVZYkpYERwNCEuZkTj1U72we5VOEqvrPyX8GErVRis7ozkXPFaU0WoBhhwUrPURaAFoljgWpukVcxa8d70Y32itqT-pMhIzCBJBlfZl6W6sd6bRhs3BNWd0E5fnL2VW3-QrCwxoTgJfFgEgr8b09T-Y3E9o7YqubCu9UlMp9OYvdXemWmqckNRKTBgcCLgmaCDjzGY9rEkCOS0dA_fyGnp5LJ0ifbuqZ1H0sOWob81ddYb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460759839</pqid></control><display><type>article</type><title>Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><creator>Brucker, Amanda ; Lu, Wenbin ; Marceau West, Rachel ; Yu, Qi-You ; Hsiao, Chuhsing Kate ; Hsiao, Tzu-Hung ; Lin, Ching-Heng ; Magnusson, Patrik K E ; Sullivan, Patrick F ; Szatkiewicz, Jin P ; Lu, Tzu-Pin ; Tzeng, Jung-Ying</creator><creatorcontrib>Brucker, Amanda ; Lu, Wenbin ; Marceau West, Rachel ; Yu, Qi-You ; Hsiao, Chuhsing Kate ; Hsiao, Tzu-Hung ; Lin, Ching-Heng ; Magnusson, Patrik K E ; Sullivan, Patrick F ; Szatkiewicz, Jin P ; Lu, Tzu-Pin ; Tzeng, Jung-Ying</creatorcontrib><description>Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007797</identifier><identifier>PMID: 32365089</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Area Under Curve ; Biology and Life Sciences ; Computational Biology - methods ; Copy number ; Copy number variations ; Deoxyribonucleic acid ; DNA ; DNA Copy Number Variations - genetics ; Dosage ; Drug dosages ; Epidemiology ; Etiology ; Genetic Predisposition to Disease - genetics ; Genetic Variation - genetics ; Genome, Human - genetics ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Genomics - methods ; Heterogeneity ; Humans ; Kernel functions ; Kernels ; Loci ; Medical research ; Medicine and Health Sciences ; Mental disorders ; Methods ; Phenotypes ; Physical Sciences ; Polymorphism, Single Nucleotide - genetics ; Preventive medicine ; Research and Analysis Methods ; Schizophrenia ; Software ; Spatial Analysis</subject><ispartof>PLoS computational biology, 2020-05, Vol.16 (5), p.e1007797</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Brucker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Brucker et al 2020 Brucker et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-5d89d657638e5298c6bfe46996240018801b7f7b22ddd16af64a1ecae9d32fd93</citedby><cites>FETCH-LOGICAL-c603t-5d89d657638e5298c6bfe46996240018801b7f7b22ddd16af64a1ecae9d32fd93</cites><orcidid>0000-0003-4905-8484 ; 0000-0002-9966-3001 ; 0000-0002-5505-1775 ; 0000-0002-7315-7899 ; 0000-0003-3697-0386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224564/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224564/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32365089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:143865315$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Brucker, Amanda</creatorcontrib><creatorcontrib>Lu, Wenbin</creatorcontrib><creatorcontrib>Marceau West, Rachel</creatorcontrib><creatorcontrib>Yu, Qi-You</creatorcontrib><creatorcontrib>Hsiao, Chuhsing Kate</creatorcontrib><creatorcontrib>Hsiao, Tzu-Hung</creatorcontrib><creatorcontrib>Lin, Ching-Heng</creatorcontrib><creatorcontrib>Magnusson, Patrik K E</creatorcontrib><creatorcontrib>Sullivan, Patrick F</creatorcontrib><creatorcontrib>Szatkiewicz, Jin P</creatorcontrib><creatorcontrib>Lu, Tzu-Pin</creatorcontrib><creatorcontrib>Tzeng, Jung-Ying</creatorcontrib><title>Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Area Under Curve</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology - methods</subject><subject>Copy number</subject><subject>Copy number variations</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Copy Number Variations - genetics</subject><subject>Dosage</subject><subject>Drug dosages</subject><subject>Epidemiology</subject><subject>Etiology</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genetic Variation - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Kernel functions</subject><subject>Kernels</subject><subject>Loci</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mental disorders</subject><subject>Methods</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Preventive medicine</subject><subject>Research and Analysis Methods</subject><subject>Schizophrenia</subject><subject>Software</subject><subject>Spatial Analysis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1v1DAQjRCIloV_gCASFzhksePvC9Iq4qNS1SJEz5bjOFsvWTu1k6323-OQtOoekA8ejd97njczWfYWgjVEDH7e-TE41a17Xds1BIAxwZ5l55AQVDBE-PMn8Vn2KsYdACkU9GV2hkpECeDiPHObGL22arDe5YOJQz5G67Z55ftjfjXuaxPyn8G3tjN5NYaDifnH6vqquvn1KTfuVjmdMr2_TzDr8qCCyfVEdTP1oIJVbshVqvQYbXydvWhVF82b5V5lN9--_q5-FJfX3y-qzWWhKUBDQRouGkoYRdyQUnBN69ZgKgQtMQCQcwBr1rK6LJumgVS1FCtotDKiQWXbCLTK3s-6feejXFoVZYkpYERwNCEuZkTj1U72we5VOEqvrPyX8GErVRis7ozkXPFaU0WoBhhwUrPURaAFoljgWpukVcxa8d70Y32itqT-pMhIzCBJBlfZl6W6sd6bRhs3BNWd0E5fnL2VW3-QrCwxoTgJfFgEgr8b09T-Y3E9o7YqubCu9UlMp9OYvdXemWmqckNRKTBgcCLgmaCDjzGY9rEkCOS0dA_fyGnp5LJ0ifbuqZ1H0sOWob81ddYb</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Brucker, Amanda</creator><creator>Lu, Wenbin</creator><creator>Marceau West, Rachel</creator><creator>Yu, Qi-You</creator><creator>Hsiao, Chuhsing Kate</creator><creator>Hsiao, Tzu-Hung</creator><creator>Lin, Ching-Heng</creator><creator>Magnusson, Patrik K E</creator><creator>Sullivan, Patrick F</creator><creator>Szatkiewicz, Jin P</creator><creator>Lu, Tzu-Pin</creator><creator>Tzeng, Jung-Ying</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4905-8484</orcidid><orcidid>https://orcid.org/0000-0002-9966-3001</orcidid><orcidid>https://orcid.org/0000-0002-5505-1775</orcidid><orcidid>https://orcid.org/0000-0002-7315-7899</orcidid><orcidid>https://orcid.org/0000-0003-3697-0386</orcidid></search><sort><creationdate>20200501</creationdate><title>Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis</title><author>Brucker, Amanda ; Lu, Wenbin ; Marceau West, Rachel ; Yu, Qi-You ; Hsiao, Chuhsing Kate ; Hsiao, Tzu-Hung ; Lin, Ching-Heng ; Magnusson, Patrik K E ; Sullivan, Patrick F ; Szatkiewicz, Jin P ; Lu, Tzu-Pin ; Tzeng, Jung-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-5d89d657638e5298c6bfe46996240018801b7f7b22ddd16af64a1ecae9d32fd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Area Under Curve</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology - methods</topic><topic>Copy number</topic><topic>Copy number variations</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Copy Number Variations - genetics</topic><topic>Dosage</topic><topic>Drug dosages</topic><topic>Epidemiology</topic><topic>Etiology</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genetic Variation - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Kernel functions</topic><topic>Kernels</topic><topic>Loci</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mental disorders</topic><topic>Methods</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Preventive medicine</topic><topic>Research and Analysis Methods</topic><topic>Schizophrenia</topic><topic>Software</topic><topic>Spatial Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brucker, Amanda</creatorcontrib><creatorcontrib>Lu, Wenbin</creatorcontrib><creatorcontrib>Marceau West, Rachel</creatorcontrib><creatorcontrib>Yu, Qi-You</creatorcontrib><creatorcontrib>Hsiao, Chuhsing Kate</creatorcontrib><creatorcontrib>Hsiao, Tzu-Hung</creatorcontrib><creatorcontrib>Lin, Ching-Heng</creatorcontrib><creatorcontrib>Magnusson, Patrik K E</creatorcontrib><creatorcontrib>Sullivan, Patrick F</creatorcontrib><creatorcontrib>Szatkiewicz, Jin P</creatorcontrib><creatorcontrib>Lu, Tzu-Pin</creatorcontrib><creatorcontrib>Tzeng, Jung-Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brucker, Amanda</au><au>Lu, Wenbin</au><au>Marceau West, Rachel</au><au>Yu, Qi-You</au><au>Hsiao, Chuhsing Kate</au><au>Hsiao, Tzu-Hung</au><au>Lin, Ching-Heng</au><au>Magnusson, Patrik K E</au><au>Sullivan, Patrick F</au><au>Szatkiewicz, Jin P</au><au>Lu, Tzu-Pin</au><au>Tzeng, Jung-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>e1007797</spage><pages>e1007797-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32365089</pmid><doi>10.1371/journal.pcbi.1007797</doi><orcidid>https://orcid.org/0000-0003-4905-8484</orcidid><orcidid>https://orcid.org/0000-0002-9966-3001</orcidid><orcidid>https://orcid.org/0000-0002-5505-1775</orcidid><orcidid>https://orcid.org/0000-0002-7315-7899</orcidid><orcidid>https://orcid.org/0000-0003-3697-0386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-05, Vol.16 (5), p.e1007797 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2460759839 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Public Library of Science (PLoS) |
subjects | Algorithms Analysis Area Under Curve Biology and Life Sciences Computational Biology - methods Copy number Copy number variations Deoxyribonucleic acid DNA DNA Copy Number Variations - genetics Dosage Drug dosages Epidemiology Etiology Genetic Predisposition to Disease - genetics Genetic Variation - genetics Genome, Human - genetics Genome-Wide Association Study - methods Genomes Genomics Genomics - methods Heterogeneity Humans Kernel functions Kernels Loci Medical research Medicine and Health Sciences Mental disorders Methods Phenotypes Physical Sciences Polymorphism, Single Nucleotide - genetics Preventive medicine Research and Analysis Methods Schizophrenia Software Spatial Analysis |
title | Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20test%20using%20Copy%20Number%20Profile%20Curves%20(CONCUR)%20enhances%20power%20in%20rare%20copy%20number%20variant%20analysis&rft.jtitle=PLoS%20computational%20biology&rft.au=Brucker,%20Amanda&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=e1007797&rft.pages=e1007797-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007797&rft_dat=%3Cgale_plos_%3EA632940719%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460759839&rft_id=info:pmid/32365089&rft_galeid=A632940719&rft_doaj_id=oai_doaj_org_article_88a8bc6a56c04085b78960c936494bce&rfr_iscdi=true |