Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI

Cardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-11, Vol.15 (11), p.e0241996-e0241996
Hauptverfasser: Moulin, Kévin, Verzhbinsky, Ilya A, Maforo, Nyasha G, Perotti, Luigi E, Ennis, Daniel B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0241996
container_issue 11
container_start_page e0241996
container_title PloS one
container_volume 15
creator Moulin, Kévin
Verzhbinsky, Ilya A
Maforo, Nyasha G
Perotti, Luigi E
Ennis, Daniel B
description Cardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diffusion tensor imaging (cDTI) at three distinct cardiac phases. The objective was to characterize cardiomyocyte organization and mobility throughout the cardiac cycle in healthy volunteers. Nine healthy volunteers were imaged with cDTI at three distinct cardiac phases (early systole, late systole, and diastasis). The sequence used a free-breathing Spin-Echo (SE) cDTI protocol (b-values = 350s/mm2, twelve diffusion encoding directions, eight repetitions) to acquire high-resolution images (1.6x1.6x8mm3) at 3T in ~7 minutes/cardiac phase. Helix Angle (HA), Helix Angle Range (HAR), E2 angle (E2A), Transverse Angle (TA), Mean Diffusivity (MD), diffusion tensor eigenvalues (λ1-2-3), and Fractional Anisotropy (FA) in the left ventricle (LV) were characterized. Images from the patient-specific TD scout sequence demonstrated that SE cDTI acquisition was possible at early systole, late systole, and diastasis in 78%, 100% and 67% of the cases, respectively. At the mid-ventricular level, mobility (reported as median [IQR]) was observed in HAR between early systole and late systole (76.9 [72.6, 80.5]° vs 96.6 [85.9, 100.3]°, p
doi_str_mv 10.1371/journal.pone.0241996
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460089718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641342841</galeid><doaj_id>oai_doaj_org_article_d5b609e99c7042f1a91fdae7bd18ce2f</doaj_id><sourcerecordid>A641342841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-72372066aecdde12149a5e43dcc1665c2102fd1a8583697caa7f16cb90f02b913</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3HX1H4gOCKIXrfmYZiY3wrL4UaisrB-3IZOctFkyk5pk1P57Uzu7dGQvJBcJJ895z8nJWxRPMZpjWuM3134IvXTzre9hjkiFOWf3ilPMKZkxguj9o_NJ8SjGa4QWtGHsYXFCKW5QQ-hpsfocfGv7dalk0NZ3O692CcouB51Nu_KXTZuyG1yys-1GRjhwUpXaGjNE6_syQR99KD9dLR8XD4x0EZ6M-1nx7f27rxcfZ6vLD8uL89VMMULSrCa0JogxCUprwARXXC6golopzNhCEYyI0Vg2i4YyXispa4OZajkyiLQc07Pi-UF363wU4yCiIBVDqOE1bjKxPBDay2uxDbaTYSe8tOJvwIe1kCFZ5UDoRcsQB85VjSpisOTYaAl1q3GjgJis9XasNrQdaAV9CtJNRKc3vd2Itf8pasZQxfbNvBoFgv8xQEyis1GBc7IHPxz6rhnHmGb0xT_o3a8bqbXMD7C98bmu2ouKc1ZhWpGm2k9pfgeVl4bOquwaY3N8kvB6kpCZBL_TWg4xiuWXq_9nL79P2ZdH7AakS5vo3ZCye-IUrA6gCj7GAOZ2yBiJvelvpiH2phej6XPas-MPuk26cTn9A1z3_BI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460089718</pqid></control><display><type>article</type><title>Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Moulin, Kévin ; Verzhbinsky, Ilya A ; Maforo, Nyasha G ; Perotti, Luigi E ; Ennis, Daniel B</creator><contributor>Lionetti, Vincenzo</contributor><creatorcontrib>Moulin, Kévin ; Verzhbinsky, Ilya A ; Maforo, Nyasha G ; Perotti, Luigi E ; Ennis, Daniel B ; Lionetti, Vincenzo</creatorcontrib><description>Cardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diffusion tensor imaging (cDTI) at three distinct cardiac phases. The objective was to characterize cardiomyocyte organization and mobility throughout the cardiac cycle in healthy volunteers. Nine healthy volunteers were imaged with cDTI at three distinct cardiac phases (early systole, late systole, and diastasis). The sequence used a free-breathing Spin-Echo (SE) cDTI protocol (b-values = 350s/mm2, twelve diffusion encoding directions, eight repetitions) to acquire high-resolution images (1.6x1.6x8mm3) at 3T in ~7 minutes/cardiac phase. Helix Angle (HA), Helix Angle Range (HAR), E2 angle (E2A), Transverse Angle (TA), Mean Diffusivity (MD), diffusion tensor eigenvalues (λ1-2-3), and Fractional Anisotropy (FA) in the left ventricle (LV) were characterized. Images from the patient-specific TD scout sequence demonstrated that SE cDTI acquisition was possible at early systole, late systole, and diastasis in 78%, 100% and 67% of the cases, respectively. At the mid-ventricular level, mobility (reported as median [IQR]) was observed in HAR between early systole and late systole (76.9 [72.6, 80.5]° vs 96.6 [85.9, 100.3]°, p&lt;0.001). E2A also changed significantly between early systole, late systole, and diastasis (27.7 [20.8, 35.1]° vs 45.2 [42.1, 49]° vs 20.7 [16.6, 26.4]°, p&lt;0.001). We demonstrate that it is possible to probe cardiomyocyte mobility using multi-phase and high resolution cDTI. In healthy volunteers, aggregate cardiomyocytes re-orient themselves more longitudinally during contraction, while cardiomyocyte sheetlets tilt radially during wall thickening. These observations provide new insights into the three-dimensional mobility of myocardial microstructure during systolic contraction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0241996</identifier><identifier>PMID: 33180823</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Anisotropy ; Biology and Life Sciences ; Cardiac function ; Cardiomyocytes ; Cardiomyopathy ; Cell Movement ; Contraction ; Diffusion ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion Tensor Imaging ; Eigenvalues ; Female ; Healthy Volunteers ; Heart ; Heart cells ; High resolution ; Humans ; Image acquisition ; Image resolution ; Magnetic resonance imaging ; Magnetic Resonance Imaging, Cine ; Male ; Mathematical analysis ; Medical research ; Medicine and Health Sciences ; Mobility ; Multiphase ; Muscle contraction ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - physiology ; Observations ; Physical Sciences ; Radiology ; Research and Analysis Methods ; Systole ; Tensors ; Thickening ; Ventricle ; Ventricular Function, Left</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0241996-e0241996</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Moulin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Moulin et al 2020 Moulin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-72372066aecdde12149a5e43dcc1665c2102fd1a8583697caa7f16cb90f02b913</citedby><cites>FETCH-LOGICAL-c622t-72372066aecdde12149a5e43dcc1665c2102fd1a8583697caa7f16cb90f02b913</cites><orcidid>0000-0002-7890-8559 ; 0000-0002-9188-6403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660468/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660468/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33180823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lionetti, Vincenzo</contributor><creatorcontrib>Moulin, Kévin</creatorcontrib><creatorcontrib>Verzhbinsky, Ilya A</creatorcontrib><creatorcontrib>Maforo, Nyasha G</creatorcontrib><creatorcontrib>Perotti, Luigi E</creatorcontrib><creatorcontrib>Ennis, Daniel B</creatorcontrib><title>Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diffusion tensor imaging (cDTI) at three distinct cardiac phases. The objective was to characterize cardiomyocyte organization and mobility throughout the cardiac cycle in healthy volunteers. Nine healthy volunteers were imaged with cDTI at three distinct cardiac phases (early systole, late systole, and diastasis). The sequence used a free-breathing Spin-Echo (SE) cDTI protocol (b-values = 350s/mm2, twelve diffusion encoding directions, eight repetitions) to acquire high-resolution images (1.6x1.6x8mm3) at 3T in ~7 minutes/cardiac phase. Helix Angle (HA), Helix Angle Range (HAR), E2 angle (E2A), Transverse Angle (TA), Mean Diffusivity (MD), diffusion tensor eigenvalues (λ1-2-3), and Fractional Anisotropy (FA) in the left ventricle (LV) were characterized. Images from the patient-specific TD scout sequence demonstrated that SE cDTI acquisition was possible at early systole, late systole, and diastasis in 78%, 100% and 67% of the cases, respectively. At the mid-ventricular level, mobility (reported as median [IQR]) was observed in HAR between early systole and late systole (76.9 [72.6, 80.5]° vs 96.6 [85.9, 100.3]°, p&lt;0.001). E2A also changed significantly between early systole, late systole, and diastasis (27.7 [20.8, 35.1]° vs 45.2 [42.1, 49]° vs 20.7 [16.6, 26.4]°, p&lt;0.001). We demonstrate that it is possible to probe cardiomyocyte mobility using multi-phase and high resolution cDTI. In healthy volunteers, aggregate cardiomyocytes re-orient themselves more longitudinally during contraction, while cardiomyocyte sheetlets tilt radially during wall thickening. These observations provide new insights into the three-dimensional mobility of myocardial microstructure during systolic contraction.</description><subject>Adult</subject><subject>Anisotropy</subject><subject>Biology and Life Sciences</subject><subject>Cardiac function</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Cell Movement</subject><subject>Contraction</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion Tensor Imaging</subject><subject>Eigenvalues</subject><subject>Female</subject><subject>Healthy Volunteers</subject><subject>Heart</subject><subject>Heart cells</subject><subject>High resolution</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image resolution</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging, Cine</subject><subject>Male</subject><subject>Mathematical analysis</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mobility</subject><subject>Multiphase</subject><subject>Muscle contraction</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Observations</subject><subject>Physical Sciences</subject><subject>Radiology</subject><subject>Research and Analysis Methods</subject><subject>Systole</subject><subject>Tensors</subject><subject>Thickening</subject><subject>Ventricle</subject><subject>Ventricular Function, Left</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3HX1H4gOCKIXrfmYZiY3wrL4UaisrB-3IZOctFkyk5pk1P57Uzu7dGQvJBcJJ895z8nJWxRPMZpjWuM3134IvXTzre9hjkiFOWf3ilPMKZkxguj9o_NJ8SjGa4QWtGHsYXFCKW5QQ-hpsfocfGv7dalk0NZ3O692CcouB51Nu_KXTZuyG1yys-1GRjhwUpXaGjNE6_syQR99KD9dLR8XD4x0EZ6M-1nx7f27rxcfZ6vLD8uL89VMMULSrCa0JogxCUprwARXXC6golopzNhCEYyI0Vg2i4YyXispa4OZajkyiLQc07Pi-UF363wU4yCiIBVDqOE1bjKxPBDay2uxDbaTYSe8tOJvwIe1kCFZ5UDoRcsQB85VjSpisOTYaAl1q3GjgJis9XasNrQdaAV9CtJNRKc3vd2Itf8pasZQxfbNvBoFgv8xQEyis1GBc7IHPxz6rhnHmGb0xT_o3a8bqbXMD7C98bmu2ouKc1ZhWpGm2k9pfgeVl4bOquwaY3N8kvB6kpCZBL_TWg4xiuWXq_9nL79P2ZdH7AakS5vo3ZCye-IUrA6gCj7GAOZ2yBiJvelvpiH2phej6XPas-MPuk26cTn9A1z3_BI</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Moulin, Kévin</creator><creator>Verzhbinsky, Ilya A</creator><creator>Maforo, Nyasha G</creator><creator>Perotti, Luigi E</creator><creator>Ennis, Daniel B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7890-8559</orcidid><orcidid>https://orcid.org/0000-0002-9188-6403</orcidid></search><sort><creationdate>20201112</creationdate><title>Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI</title><author>Moulin, Kévin ; Verzhbinsky, Ilya A ; Maforo, Nyasha G ; Perotti, Luigi E ; Ennis, Daniel B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-72372066aecdde12149a5e43dcc1665c2102fd1a8583697caa7f16cb90f02b913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Anisotropy</topic><topic>Biology and Life Sciences</topic><topic>Cardiac function</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Cell Movement</topic><topic>Contraction</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion Tensor Imaging</topic><topic>Eigenvalues</topic><topic>Female</topic><topic>Healthy Volunteers</topic><topic>Heart</topic><topic>Heart cells</topic><topic>High resolution</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image resolution</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging, Cine</topic><topic>Male</topic><topic>Mathematical analysis</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mobility</topic><topic>Multiphase</topic><topic>Muscle contraction</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Observations</topic><topic>Physical Sciences</topic><topic>Radiology</topic><topic>Research and Analysis Methods</topic><topic>Systole</topic><topic>Tensors</topic><topic>Thickening</topic><topic>Ventricle</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulin, Kévin</creatorcontrib><creatorcontrib>Verzhbinsky, Ilya A</creatorcontrib><creatorcontrib>Maforo, Nyasha G</creatorcontrib><creatorcontrib>Perotti, Luigi E</creatorcontrib><creatorcontrib>Ennis, Daniel B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulin, Kévin</au><au>Verzhbinsky, Ilya A</au><au>Maforo, Nyasha G</au><au>Perotti, Luigi E</au><au>Ennis, Daniel B</au><au>Lionetti, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-12</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0241996</spage><epage>e0241996</epage><pages>e0241996-e0241996</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diffusion tensor imaging (cDTI) at three distinct cardiac phases. The objective was to characterize cardiomyocyte organization and mobility throughout the cardiac cycle in healthy volunteers. Nine healthy volunteers were imaged with cDTI at three distinct cardiac phases (early systole, late systole, and diastasis). The sequence used a free-breathing Spin-Echo (SE) cDTI protocol (b-values = 350s/mm2, twelve diffusion encoding directions, eight repetitions) to acquire high-resolution images (1.6x1.6x8mm3) at 3T in ~7 minutes/cardiac phase. Helix Angle (HA), Helix Angle Range (HAR), E2 angle (E2A), Transverse Angle (TA), Mean Diffusivity (MD), diffusion tensor eigenvalues (λ1-2-3), and Fractional Anisotropy (FA) in the left ventricle (LV) were characterized. Images from the patient-specific TD scout sequence demonstrated that SE cDTI acquisition was possible at early systole, late systole, and diastasis in 78%, 100% and 67% of the cases, respectively. At the mid-ventricular level, mobility (reported as median [IQR]) was observed in HAR between early systole and late systole (76.9 [72.6, 80.5]° vs 96.6 [85.9, 100.3]°, p&lt;0.001). E2A also changed significantly between early systole, late systole, and diastasis (27.7 [20.8, 35.1]° vs 45.2 [42.1, 49]° vs 20.7 [16.6, 26.4]°, p&lt;0.001). We demonstrate that it is possible to probe cardiomyocyte mobility using multi-phase and high resolution cDTI. In healthy volunteers, aggregate cardiomyocytes re-orient themselves more longitudinally during contraction, while cardiomyocyte sheetlets tilt radially during wall thickening. These observations provide new insights into the three-dimensional mobility of myocardial microstructure during systolic contraction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33180823</pmid><doi>10.1371/journal.pone.0241996</doi><tpages>e0241996</tpages><orcidid>https://orcid.org/0000-0002-7890-8559</orcidid><orcidid>https://orcid.org/0000-0002-9188-6403</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-11, Vol.15 (11), p.e0241996-e0241996
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2460089718
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Anisotropy
Biology and Life Sciences
Cardiac function
Cardiomyocytes
Cardiomyopathy
Cell Movement
Contraction
Diffusion
Diffusion Magnetic Resonance Imaging - methods
Diffusion Tensor Imaging
Eigenvalues
Female
Healthy Volunteers
Heart
Heart cells
High resolution
Humans
Image acquisition
Image resolution
Magnetic resonance imaging
Magnetic Resonance Imaging, Cine
Male
Mathematical analysis
Medical research
Medicine and Health Sciences
Mobility
Multiphase
Muscle contraction
Myocytes, Cardiac - cytology
Myocytes, Cardiac - physiology
Observations
Physical Sciences
Radiology
Research and Analysis Methods
Systole
Tensors
Thickening
Ventricle
Ventricular Function, Left
title Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20cardiomyocyte%20mobility%20with%20multi-phase%20cardiac%20diffusion%20tensor%20MRI&rft.jtitle=PloS%20one&rft.au=Moulin,%20K%C3%A9vin&rft.date=2020-11-12&rft.volume=15&rft.issue=11&rft.spage=e0241996&rft.epage=e0241996&rft.pages=e0241996-e0241996&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0241996&rft_dat=%3Cgale_plos_%3EA641342841%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460089718&rft_id=info:pmid/33180823&rft_galeid=A641342841&rft_doaj_id=oai_doaj_org_article_d5b609e99c7042f1a91fdae7bd18ce2f&rfr_iscdi=true