Whole blood transcriptome biomarkers of unruptured intracranial aneurysm
The rupture of an intracranial aneurysm (IA) causes devastating subarachnoid hemorrhages, yet most IAs remain undiscovered until they rupture. Recently, we found an IA RNA expression signature of circulating neutrophils, and used transcriptome data to build predictive models for unruptured IAs. In t...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-11, Vol.15 (11), p.e0241838-e0241838 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0241838 |
---|---|
container_issue | 11 |
container_start_page | e0241838 |
container_title | PloS one |
container_volume | 15 |
creator | Poppenberg, Kerry E Li, Lu Waqas, Muhammad Paliwal, Nikhil Jiang, Kaiyu Jarvis, James N Sun, Yijun Snyder, Kenneth V Levy, Elad I Siddiqui, Adnan H Kolega, John Meng, Hui Tutino, Vincent M |
description | The rupture of an intracranial aneurysm (IA) causes devastating subarachnoid hemorrhages, yet most IAs remain undiscovered until they rupture. Recently, we found an IA RNA expression signature of circulating neutrophils, and used transcriptome data to build predictive models for unruptured IAs. In this study, we evaluate the feasibility of using whole blood transcriptomes to predict the presence of unruptured IAs.
We subjected RNA from peripheral whole blood of 67 patients (34 with unruptured IA, 33 without IA) to next-generation RNA sequencing. Model genes were identified using the least absolute shrinkage and selection operator (LASSO) in a random training cohort (n = 47). These genes were used to train a Gaussian Support Vector Machine (gSVM) model to distinguish patients with IA. The model was applied to an independent testing cohort (n = 20) to evaluate performance by receiver operating characteristic (ROC) curve. Gene ontology and pathway analyses investigated the underlying biology of the model genes.
We identified 18 genes that could distinguish IA patients in a training cohort with 85% accuracy. This SVM model also had 85% accuracy in the testing cohort, with an area under the ROC curve of 0.91. Bioinformatics reflected activation and recruitment of leukocytes, activation of macrophages, and inflammatory response, suggesting that the biomarker captures important processes in IA pathogenesis.
Circulating whole blood transcriptomes can detect the presence of unruptured IAs. Pending additional testing in larger cohorts, this could serve as a foundation to develop a simple blood-based test to facilitate screening and early detection of IAs. |
doi_str_mv | 10.1371/journal.pone.0241838 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2458316785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640804099</galeid><doaj_id>oai_doaj_org_article_1a20a03d766643b9b8c8b5453804bb29</doaj_id><sourcerecordid>A640804099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ee056ddd12f9ad56a995b58392a9067df42dd4e4d456926439c345a97a010c683</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7of-A9GCIHoxY77b3AjLou7AwoKflyFt0pmMaTObtLL77z11ustU9kJ60XL6nDfnvHmz7AVGS0wL_H4bhthpv9yFzi4RYbik5aPsGEtKFoIg-vjg-yg7SWmLEKelEE-zI0oxFyWVx9nFz03wNq98CCbvo-5SHd2uDy3UXGh1_GVjykOTD10cdv0QrcldB2ANrNM-150d4m1qn2VPGu2TfT69T7Pvnz5-O79YXF59Xp2fXS5qIUm_sBZxYYzBpJHacKGl5BWHUYiWSBSmYcQYZplhHHjBqKwp41oWGmFUw8yn2au97s6HpCYTkiIMRLAoSg7Eak-YoLdqFx1scauCdupvIcS10rF3tbcKa4I0oqYQAo6qZFXWZcUZ2IRYVREJWh-m04aqtaa24-p-Jjr_07mNWoffqhCsQLIAgbeTQAzXg029al2qrffgWxj2cxeEY04Bff0P-vB2E7XWsIDrmjBexiiqzgRDMDiS49zLByh4jG1dDYlpHNRnDe9mDcD09qZf6yEltfr65f_Zqx9z9s0Bu7Ha95sU_NC70KU5yPZgHUNK0Tb3JmOkxsDfuaHGwKsp8ND28vCC7pvuEk7_ALWG-kU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458316785</pqid></control><display><type>article</type><title>Whole blood transcriptome biomarkers of unruptured intracranial aneurysm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Poppenberg, Kerry E ; Li, Lu ; Waqas, Muhammad ; Paliwal, Nikhil ; Jiang, Kaiyu ; Jarvis, James N ; Sun, Yijun ; Snyder, Kenneth V ; Levy, Elad I ; Siddiqui, Adnan H ; Kolega, John ; Meng, Hui ; Tutino, Vincent M</creator><contributor>Ai, Jinglu</contributor><creatorcontrib>Poppenberg, Kerry E ; Li, Lu ; Waqas, Muhammad ; Paliwal, Nikhil ; Jiang, Kaiyu ; Jarvis, James N ; Sun, Yijun ; Snyder, Kenneth V ; Levy, Elad I ; Siddiqui, Adnan H ; Kolega, John ; Meng, Hui ; Tutino, Vincent M ; Ai, Jinglu</creatorcontrib><description>The rupture of an intracranial aneurysm (IA) causes devastating subarachnoid hemorrhages, yet most IAs remain undiscovered until they rupture. Recently, we found an IA RNA expression signature of circulating neutrophils, and used transcriptome data to build predictive models for unruptured IAs. In this study, we evaluate the feasibility of using whole blood transcriptomes to predict the presence of unruptured IAs.
We subjected RNA from peripheral whole blood of 67 patients (34 with unruptured IA, 33 without IA) to next-generation RNA sequencing. Model genes were identified using the least absolute shrinkage and selection operator (LASSO) in a random training cohort (n = 47). These genes were used to train a Gaussian Support Vector Machine (gSVM) model to distinguish patients with IA. The model was applied to an independent testing cohort (n = 20) to evaluate performance by receiver operating characteristic (ROC) curve. Gene ontology and pathway analyses investigated the underlying biology of the model genes.
We identified 18 genes that could distinguish IA patients in a training cohort with 85% accuracy. This SVM model also had 85% accuracy in the testing cohort, with an area under the ROC curve of 0.91. Bioinformatics reflected activation and recruitment of leukocytes, activation of macrophages, and inflammatory response, suggesting that the biomarker captures important processes in IA pathogenesis.
Circulating whole blood transcriptomes can detect the presence of unruptured IAs. Pending additional testing in larger cohorts, this could serve as a foundation to develop a simple blood-based test to facilitate screening and early detection of IAs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0241838</identifier><identifier>PMID: 33156839</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aneurysm ; Bioinformatics ; Biological markers ; Biology and Life Sciences ; Biomarkers ; Biomarkers - blood ; Biomedical engineering ; Blood ; Blood circulation ; Case-Control Studies ; Cell activation ; Cerebral aneurysm ; Diagnosis ; Engineering ; Exome Sequencing ; Feasibility studies ; Female ; Gene expression ; Gene Expression Profiling - methods ; Gene sequencing ; Genes ; Genomics ; Health aspects ; Hemorrhage ; Humans ; Inflammation ; Inflammatory response ; Intracranial Aneurysm - blood ; Intracranial Aneurysm - genetics ; Leukocyte migration ; Leukocytes ; Leukocytes (neutrophilic) ; Machine learning ; Macrophages ; Male ; Medical imaging ; Medical records ; Medicine and Health Sciences ; Middle Aged ; Model accuracy ; Neurosurgery ; Neutrophils ; Pathogenesis ; Pathology ; Performance evaluation ; Prediction models ; Preventive maintenance ; Research and analysis methods ; Ribonucleic acid ; RNA ; RNA, Messenger - blood ; ROC Curve ; Rupture ; Sequence Analysis, RNA ; Stroke ; Support Vector Machine ; Support vector machines ; Training ; Transcription factors</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0241838-e0241838</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Poppenberg et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Poppenberg et al 2020 Poppenberg et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ee056ddd12f9ad56a995b58392a9067df42dd4e4d456926439c345a97a010c683</citedby><cites>FETCH-LOGICAL-c692t-ee056ddd12f9ad56a995b58392a9067df42dd4e4d456926439c345a97a010c683</cites><orcidid>0000-0002-1748-887X ; 0000-0001-6933-8681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647097/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647097/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33156839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ai, Jinglu</contributor><creatorcontrib>Poppenberg, Kerry E</creatorcontrib><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Waqas, Muhammad</creatorcontrib><creatorcontrib>Paliwal, Nikhil</creatorcontrib><creatorcontrib>Jiang, Kaiyu</creatorcontrib><creatorcontrib>Jarvis, James N</creatorcontrib><creatorcontrib>Sun, Yijun</creatorcontrib><creatorcontrib>Snyder, Kenneth V</creatorcontrib><creatorcontrib>Levy, Elad I</creatorcontrib><creatorcontrib>Siddiqui, Adnan H</creatorcontrib><creatorcontrib>Kolega, John</creatorcontrib><creatorcontrib>Meng, Hui</creatorcontrib><creatorcontrib>Tutino, Vincent M</creatorcontrib><title>Whole blood transcriptome biomarkers of unruptured intracranial aneurysm</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The rupture of an intracranial aneurysm (IA) causes devastating subarachnoid hemorrhages, yet most IAs remain undiscovered until they rupture. Recently, we found an IA RNA expression signature of circulating neutrophils, and used transcriptome data to build predictive models for unruptured IAs. In this study, we evaluate the feasibility of using whole blood transcriptomes to predict the presence of unruptured IAs.
We subjected RNA from peripheral whole blood of 67 patients (34 with unruptured IA, 33 without IA) to next-generation RNA sequencing. Model genes were identified using the least absolute shrinkage and selection operator (LASSO) in a random training cohort (n = 47). These genes were used to train a Gaussian Support Vector Machine (gSVM) model to distinguish patients with IA. The model was applied to an independent testing cohort (n = 20) to evaluate performance by receiver operating characteristic (ROC) curve. Gene ontology and pathway analyses investigated the underlying biology of the model genes.
We identified 18 genes that could distinguish IA patients in a training cohort with 85% accuracy. This SVM model also had 85% accuracy in the testing cohort, with an area under the ROC curve of 0.91. Bioinformatics reflected activation and recruitment of leukocytes, activation of macrophages, and inflammatory response, suggesting that the biomarker captures important processes in IA pathogenesis.
Circulating whole blood transcriptomes can detect the presence of unruptured IAs. Pending additional testing in larger cohorts, this could serve as a foundation to develop a simple blood-based test to facilitate screening and early detection of IAs.</description><subject>Aneurysm</subject><subject>Bioinformatics</subject><subject>Biological markers</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biomedical engineering</subject><subject>Blood</subject><subject>Blood circulation</subject><subject>Case-Control Studies</subject><subject>Cell activation</subject><subject>Cerebral aneurysm</subject><subject>Diagnosis</subject><subject>Engineering</subject><subject>Exome Sequencing</subject><subject>Feasibility studies</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Hemorrhage</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Intracranial Aneurysm - blood</subject><subject>Intracranial Aneurysm - genetics</subject><subject>Leukocyte migration</subject><subject>Leukocytes</subject><subject>Leukocytes (neutrophilic)</subject><subject>Machine learning</subject><subject>Macrophages</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical records</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Model accuracy</subject><subject>Neurosurgery</subject><subject>Neutrophils</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Preventive maintenance</subject><subject>Research and analysis methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - blood</subject><subject>ROC Curve</subject><subject>Rupture</subject><subject>Sequence Analysis, RNA</subject><subject>Stroke</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7of-A9GCIHoxY77b3AjLou7AwoKflyFt0pmMaTObtLL77z11ustU9kJ60XL6nDfnvHmz7AVGS0wL_H4bhthpv9yFzi4RYbik5aPsGEtKFoIg-vjg-yg7SWmLEKelEE-zI0oxFyWVx9nFz03wNq98CCbvo-5SHd2uDy3UXGh1_GVjykOTD10cdv0QrcldB2ANrNM-150d4m1qn2VPGu2TfT69T7Pvnz5-O79YXF59Xp2fXS5qIUm_sBZxYYzBpJHacKGl5BWHUYiWSBSmYcQYZplhHHjBqKwp41oWGmFUw8yn2au97s6HpCYTkiIMRLAoSg7Eak-YoLdqFx1scauCdupvIcS10rF3tbcKa4I0oqYQAo6qZFXWZcUZ2IRYVREJWh-m04aqtaa24-p-Jjr_07mNWoffqhCsQLIAgbeTQAzXg029al2qrffgWxj2cxeEY04Bff0P-vB2E7XWsIDrmjBexiiqzgRDMDiS49zLByh4jG1dDYlpHNRnDe9mDcD09qZf6yEltfr65f_Zqx9z9s0Bu7Ha95sU_NC70KU5yPZgHUNK0Tb3JmOkxsDfuaHGwKsp8ND28vCC7pvuEk7_ALWG-kU</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Poppenberg, Kerry E</creator><creator>Li, Lu</creator><creator>Waqas, Muhammad</creator><creator>Paliwal, Nikhil</creator><creator>Jiang, Kaiyu</creator><creator>Jarvis, James N</creator><creator>Sun, Yijun</creator><creator>Snyder, Kenneth V</creator><creator>Levy, Elad I</creator><creator>Siddiqui, Adnan H</creator><creator>Kolega, John</creator><creator>Meng, Hui</creator><creator>Tutino, Vincent M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1748-887X</orcidid><orcidid>https://orcid.org/0000-0001-6933-8681</orcidid></search><sort><creationdate>20201106</creationdate><title>Whole blood transcriptome biomarkers of unruptured intracranial aneurysm</title><author>Poppenberg, Kerry E ; Li, Lu ; Waqas, Muhammad ; Paliwal, Nikhil ; Jiang, Kaiyu ; Jarvis, James N ; Sun, Yijun ; Snyder, Kenneth V ; Levy, Elad I ; Siddiqui, Adnan H ; Kolega, John ; Meng, Hui ; Tutino, Vincent M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ee056ddd12f9ad56a995b58392a9067df42dd4e4d456926439c345a97a010c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aneurysm</topic><topic>Bioinformatics</topic><topic>Biological markers</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biomedical engineering</topic><topic>Blood</topic><topic>Blood circulation</topic><topic>Case-Control Studies</topic><topic>Cell activation</topic><topic>Cerebral aneurysm</topic><topic>Diagnosis</topic><topic>Engineering</topic><topic>Exome Sequencing</topic><topic>Feasibility studies</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Hemorrhage</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Intracranial Aneurysm - blood</topic><topic>Intracranial Aneurysm - genetics</topic><topic>Leukocyte migration</topic><topic>Leukocytes</topic><topic>Leukocytes (neutrophilic)</topic><topic>Machine learning</topic><topic>Macrophages</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical records</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Model accuracy</topic><topic>Neurosurgery</topic><topic>Neutrophils</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Preventive maintenance</topic><topic>Research and analysis methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - blood</topic><topic>ROC Curve</topic><topic>Rupture</topic><topic>Sequence Analysis, RNA</topic><topic>Stroke</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poppenberg, Kerry E</creatorcontrib><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Waqas, Muhammad</creatorcontrib><creatorcontrib>Paliwal, Nikhil</creatorcontrib><creatorcontrib>Jiang, Kaiyu</creatorcontrib><creatorcontrib>Jarvis, James N</creatorcontrib><creatorcontrib>Sun, Yijun</creatorcontrib><creatorcontrib>Snyder, Kenneth V</creatorcontrib><creatorcontrib>Levy, Elad I</creatorcontrib><creatorcontrib>Siddiqui, Adnan H</creatorcontrib><creatorcontrib>Kolega, John</creatorcontrib><creatorcontrib>Meng, Hui</creatorcontrib><creatorcontrib>Tutino, Vincent M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poppenberg, Kerry E</au><au>Li, Lu</au><au>Waqas, Muhammad</au><au>Paliwal, Nikhil</au><au>Jiang, Kaiyu</au><au>Jarvis, James N</au><au>Sun, Yijun</au><au>Snyder, Kenneth V</au><au>Levy, Elad I</au><au>Siddiqui, Adnan H</au><au>Kolega, John</au><au>Meng, Hui</au><au>Tutino, Vincent M</au><au>Ai, Jinglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole blood transcriptome biomarkers of unruptured intracranial aneurysm</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0241838</spage><epage>e0241838</epage><pages>e0241838-e0241838</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The rupture of an intracranial aneurysm (IA) causes devastating subarachnoid hemorrhages, yet most IAs remain undiscovered until they rupture. Recently, we found an IA RNA expression signature of circulating neutrophils, and used transcriptome data to build predictive models for unruptured IAs. In this study, we evaluate the feasibility of using whole blood transcriptomes to predict the presence of unruptured IAs.
We subjected RNA from peripheral whole blood of 67 patients (34 with unruptured IA, 33 without IA) to next-generation RNA sequencing. Model genes were identified using the least absolute shrinkage and selection operator (LASSO) in a random training cohort (n = 47). These genes were used to train a Gaussian Support Vector Machine (gSVM) model to distinguish patients with IA. The model was applied to an independent testing cohort (n = 20) to evaluate performance by receiver operating characteristic (ROC) curve. Gene ontology and pathway analyses investigated the underlying biology of the model genes.
We identified 18 genes that could distinguish IA patients in a training cohort with 85% accuracy. This SVM model also had 85% accuracy in the testing cohort, with an area under the ROC curve of 0.91. Bioinformatics reflected activation and recruitment of leukocytes, activation of macrophages, and inflammatory response, suggesting that the biomarker captures important processes in IA pathogenesis.
Circulating whole blood transcriptomes can detect the presence of unruptured IAs. Pending additional testing in larger cohorts, this could serve as a foundation to develop a simple blood-based test to facilitate screening and early detection of IAs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33156839</pmid><doi>10.1371/journal.pone.0241838</doi><tpages>e0241838</tpages><orcidid>https://orcid.org/0000-0002-1748-887X</orcidid><orcidid>https://orcid.org/0000-0001-6933-8681</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-11, Vol.15 (11), p.e0241838-e0241838 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2458316785 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aneurysm Bioinformatics Biological markers Biology and Life Sciences Biomarkers Biomarkers - blood Biomedical engineering Blood Blood circulation Case-Control Studies Cell activation Cerebral aneurysm Diagnosis Engineering Exome Sequencing Feasibility studies Female Gene expression Gene Expression Profiling - methods Gene sequencing Genes Genomics Health aspects Hemorrhage Humans Inflammation Inflammatory response Intracranial Aneurysm - blood Intracranial Aneurysm - genetics Leukocyte migration Leukocytes Leukocytes (neutrophilic) Machine learning Macrophages Male Medical imaging Medical records Medicine and Health Sciences Middle Aged Model accuracy Neurosurgery Neutrophils Pathogenesis Pathology Performance evaluation Prediction models Preventive maintenance Research and analysis methods Ribonucleic acid RNA RNA, Messenger - blood ROC Curve Rupture Sequence Analysis, RNA Stroke Support Vector Machine Support vector machines Training Transcription factors |
title | Whole blood transcriptome biomarkers of unruptured intracranial aneurysm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole%20blood%20transcriptome%20biomarkers%20of%20unruptured%20intracranial%20aneurysm&rft.jtitle=PloS%20one&rft.au=Poppenberg,%20Kerry%20E&rft.date=2020-11-06&rft.volume=15&rft.issue=11&rft.spage=e0241838&rft.epage=e0241838&rft.pages=e0241838-e0241838&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0241838&rft_dat=%3Cgale_plos_%3EA640804099%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458316785&rft_id=info:pmid/33156839&rft_galeid=A640804099&rft_doaj_id=oai_doaj_org_article_1a20a03d766643b9b8c8b5453804bb29&rfr_iscdi=true |