A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus
In recent years, the development of diagnostics using artificial intelligence (AI) has been remarkable. AI algorithms can go beyond human reasoning and build diagnostic models from a number of complex combinations. Using next-generation sequencing technology, we identified hepatitis C virus (HCV) va...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-11, Vol.15 (11), p.e0242028-e0242028 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0242028 |
---|---|
container_issue | 11 |
container_start_page | e0242028 |
container_title | PloS one |
container_volume | 15 |
creator | Haga, Hiroaki Sato, Hidenori Koseki, Ayumi Saito, Takafumi Okumoto, Kazuo Hoshikawa, Kyoko Katsumi, Tomohiro Mizuno, Kei Nishina, Taketo Ueno, Yoshiyuki |
description | In recent years, the development of diagnostics using artificial intelligence (AI) has been remarkable. AI algorithms can go beyond human reasoning and build diagnostic models from a number of complex combinations. Using next-generation sequencing technology, we identified hepatitis C virus (HCV) variants resistant to directing-acting antivirals (DAA) by whole genome sequencing of full-length HCV genomes, and applied these variants to various machine-learning algorithms to evaluate a preliminary predictive model. HCV genomic RNA was extracted from serum from 173 patients (109 with subsequent sustained virological response [SVR] and 64 without) before DAA treatment. HCV genomes from the 109 SVR and 64 non-SVR patients were randomly divided into a training data set (57 SVR and 29 non-SVR) and a validation-data set (52 SVR and 35 non-SVR). The training data set was subject to nine machine-learning algorithms selected to identify the optimized combination of functional variants in relation to SVR status following DAA therapy. Subsequently, the prediction model was tested by the validation-data set. The most accurate learning method was the support vector machine (SVM) algorithm (validation accuracy, 0.95; kappa statistic, 0.90; F-value, 0.94). The second-most accurate learning algorithm was Multi-layer perceptron. Unfortunately, Decision Tree, and Naive Bayes algorithms could not be fitted with our data set due to low accuracy (< 0.8). Conclusively, with an accuracy rate of 95.4% in the generalization performance evaluation, SVM was identified as the best algorithm. Analytical methods based on genomic analysis and the construction of a predictive model by machine-learning may be applicable to the selection of the optimal treatment for other viral infections and cancer. |
doi_str_mv | 10.1371/journal.pone.0242028 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2457962002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640707105</galeid><doaj_id>oai_doaj_org_article_469b2ea1fd3940dba348d7f2794db829</doaj_id><sourcerecordid>A640707105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-674ab8791caec9c349792caa1af64b4311b38f779c145262ed45c60a9f20223a3</originalsourceid><addsrcrecordid>eNqNk9uO0zAQhiMEYpfCGyCwhITgosWnxMkNUlVxqLTSSpxurYkzaV0lcbGdAm-Pu-2uWrQXKBeO7G_-8fyeybLnjM6YUOzdxo1-gG62dQPOKJec8vJBdskqwacFp-Lhyf9F9iSEDaW5KIvicXYhBMs5lcVl1sxJD2ZtByQdgh_ssJrWELAh0SPEHodIth4ba6J1A-ldgx0ZQ8LIr7XrkKxwcD2SHXgLQwzEtWSNW4g22kAWZGf9GJ5mj1roAj47rpPs-8cP3xafp1fXn5aL-dXUqLyM00JJqEtVMQNoKiNkpSpuABi0haylYKwWZatUZZjMecGxkbkpKFRtqp0LEJPs5UF327mgjwYFzWWuqmQD5YlYHojGwUZvve3B_9EOrL7ZcH6lwUdrOtSyqGqOwNpGVJI2NQhZNqrlqpJNXfIqab0_ZhvrHhuTrPLQnYmenwx2rVdup1UhJVV7gTdHAe9-jhii7m0w2HUwoBtv7l1SkafHSuirf9D7qztSK0gF2KF1Ka_Zi-p5kVJSxVILTLLZPVT6GuytSd3U2rR_FvD2LCAxEX_HFYwh6OXXL__PXv84Z1-fsGuELq6D68Z9p4VzUB5A410IHts7kxnV-2G4dUPvh0EfhyGFvTh9oLug2-4XfwECXwPu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457962002</pqid></control><display><type>article</type><title>A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Haga, Hiroaki ; Sato, Hidenori ; Koseki, Ayumi ; Saito, Takafumi ; Okumoto, Kazuo ; Hoshikawa, Kyoko ; Katsumi, Tomohiro ; Mizuno, Kei ; Nishina, Taketo ; Ueno, Yoshiyuki</creator><contributor>Kanda, Tatsuo</contributor><creatorcontrib>Haga, Hiroaki ; Sato, Hidenori ; Koseki, Ayumi ; Saito, Takafumi ; Okumoto, Kazuo ; Hoshikawa, Kyoko ; Katsumi, Tomohiro ; Mizuno, Kei ; Nishina, Taketo ; Ueno, Yoshiyuki ; Kanda, Tatsuo</creatorcontrib><description>In recent years, the development of diagnostics using artificial intelligence (AI) has been remarkable. AI algorithms can go beyond human reasoning and build diagnostic models from a number of complex combinations. Using next-generation sequencing technology, we identified hepatitis C virus (HCV) variants resistant to directing-acting antivirals (DAA) by whole genome sequencing of full-length HCV genomes, and applied these variants to various machine-learning algorithms to evaluate a preliminary predictive model. HCV genomic RNA was extracted from serum from 173 patients (109 with subsequent sustained virological response [SVR] and 64 without) before DAA treatment. HCV genomes from the 109 SVR and 64 non-SVR patients were randomly divided into a training data set (57 SVR and 29 non-SVR) and a validation-data set (52 SVR and 35 non-SVR). The training data set was subject to nine machine-learning algorithms selected to identify the optimized combination of functional variants in relation to SVR status following DAA therapy. Subsequently, the prediction model was tested by the validation-data set. The most accurate learning method was the support vector machine (SVM) algorithm (validation accuracy, 0.95; kappa statistic, 0.90; F-value, 0.94). The second-most accurate learning algorithm was Multi-layer perceptron. Unfortunately, Decision Tree, and Naive Bayes algorithms could not be fitted with our data set due to low accuracy (< 0.8). Conclusively, with an accuracy rate of 95.4% in the generalization performance evaluation, SVM was identified as the best algorithm. Analytical methods based on genomic analysis and the construction of a predictive model by machine-learning may be applicable to the selection of the optimal treatment for other viral infections and cancer.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242028</identifier><identifier>PMID: 33152046</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aged ; Algorithms ; Analytical methods ; Antiviral agents ; Antiviral Agents - therapeutic use ; Artificial Intelligence ; Bayes Theorem ; Bayesian analysis ; Big Data ; Biology and Life Sciences ; Computer and Information Sciences ; Datasets ; Decision trees ; Diagnostic systems ; Discriminant analysis ; Drug Therapy, Combination - methods ; Female ; Gastroenterology ; Gene sequencing ; Genetic aspects ; Genetic Variation - genetics ; Genome, Viral - genetics ; Genomes ; Genomic analysis ; Health aspects ; Hepacivirus - drug effects ; Hepacivirus - genetics ; Hepatitis ; Hepatitis C ; Hepatitis C - drug therapy ; Hepatitis C - virology ; Hepatitis C virus ; Humans ; Identification and classification ; Learning algorithms ; Machine Learning ; Male ; Medicine ; Medicine and health sciences ; Model testing ; Multilayers ; Neural Networks, Computer ; Next-generation sequencing ; Patients ; Performance evaluation ; Physical Sciences ; Prediction models ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; RNA, Viral - genetics ; Statistical analysis ; Statistics ; Support Vector Machine ; Support vector machines ; Sustained Virologic Response ; Testing ; Training ; University faculty ; Viruses ; Whole genome sequencing</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242028-e0242028</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Haga et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Haga et al 2020 Haga et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-674ab8791caec9c349792caa1af64b4311b38f779c145262ed45c60a9f20223a3</citedby><cites>FETCH-LOGICAL-c758t-674ab8791caec9c349792caa1af64b4311b38f779c145262ed45c60a9f20223a3</cites><orcidid>0000-0001-5623-4250 ; 0000-0001-9355-1837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33152046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kanda, Tatsuo</contributor><creatorcontrib>Haga, Hiroaki</creatorcontrib><creatorcontrib>Sato, Hidenori</creatorcontrib><creatorcontrib>Koseki, Ayumi</creatorcontrib><creatorcontrib>Saito, Takafumi</creatorcontrib><creatorcontrib>Okumoto, Kazuo</creatorcontrib><creatorcontrib>Hoshikawa, Kyoko</creatorcontrib><creatorcontrib>Katsumi, Tomohiro</creatorcontrib><creatorcontrib>Mizuno, Kei</creatorcontrib><creatorcontrib>Nishina, Taketo</creatorcontrib><creatorcontrib>Ueno, Yoshiyuki</creatorcontrib><title>A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In recent years, the development of diagnostics using artificial intelligence (AI) has been remarkable. AI algorithms can go beyond human reasoning and build diagnostic models from a number of complex combinations. Using next-generation sequencing technology, we identified hepatitis C virus (HCV) variants resistant to directing-acting antivirals (DAA) by whole genome sequencing of full-length HCV genomes, and applied these variants to various machine-learning algorithms to evaluate a preliminary predictive model. HCV genomic RNA was extracted from serum from 173 patients (109 with subsequent sustained virological response [SVR] and 64 without) before DAA treatment. HCV genomes from the 109 SVR and 64 non-SVR patients were randomly divided into a training data set (57 SVR and 29 non-SVR) and a validation-data set (52 SVR and 35 non-SVR). The training data set was subject to nine machine-learning algorithms selected to identify the optimized combination of functional variants in relation to SVR status following DAA therapy. Subsequently, the prediction model was tested by the validation-data set. The most accurate learning method was the support vector machine (SVM) algorithm (validation accuracy, 0.95; kappa statistic, 0.90; F-value, 0.94). The second-most accurate learning algorithm was Multi-layer perceptron. Unfortunately, Decision Tree, and Naive Bayes algorithms could not be fitted with our data set due to low accuracy (< 0.8). Conclusively, with an accuracy rate of 95.4% in the generalization performance evaluation, SVM was identified as the best algorithm. Analytical methods based on genomic analysis and the construction of a predictive model by machine-learning may be applicable to the selection of the optimal treatment for other viral infections and cancer.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Analytical methods</subject><subject>Antiviral agents</subject><subject>Antiviral Agents - therapeutic use</subject><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Big Data</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Diagnostic systems</subject><subject>Discriminant analysis</subject><subject>Drug Therapy, Combination - methods</subject><subject>Female</subject><subject>Gastroenterology</subject><subject>Gene sequencing</subject><subject>Genetic aspects</subject><subject>Genetic Variation - genetics</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Health aspects</subject><subject>Hepacivirus - drug effects</subject><subject>Hepacivirus - genetics</subject><subject>Hepatitis</subject><subject>Hepatitis C</subject><subject>Hepatitis C - drug therapy</subject><subject>Hepatitis C - virology</subject><subject>Hepatitis C virus</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine and health sciences</subject><subject>Model testing</subject><subject>Multilayers</subject><subject>Neural Networks, Computer</subject><subject>Next-generation sequencing</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Viral - genetics</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Sustained Virologic Response</subject><subject>Testing</subject><subject>Training</subject><subject>University faculty</subject><subject>Viruses</subject><subject>Whole genome sequencing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uO0zAQhiMEYpfCGyCwhITgosWnxMkNUlVxqLTSSpxurYkzaV0lcbGdAm-Pu-2uWrQXKBeO7G_-8fyeybLnjM6YUOzdxo1-gG62dQPOKJec8vJBdskqwacFp-Lhyf9F9iSEDaW5KIvicXYhBMs5lcVl1sxJD2ZtByQdgh_ssJrWELAh0SPEHodIth4ba6J1A-ldgx0ZQ8LIr7XrkKxwcD2SHXgLQwzEtWSNW4g22kAWZGf9GJ5mj1roAj47rpPs-8cP3xafp1fXn5aL-dXUqLyM00JJqEtVMQNoKiNkpSpuABi0haylYKwWZatUZZjMecGxkbkpKFRtqp0LEJPs5UF327mgjwYFzWWuqmQD5YlYHojGwUZvve3B_9EOrL7ZcH6lwUdrOtSyqGqOwNpGVJI2NQhZNqrlqpJNXfIqab0_ZhvrHhuTrPLQnYmenwx2rVdup1UhJVV7gTdHAe9-jhii7m0w2HUwoBtv7l1SkafHSuirf9D7qztSK0gF2KF1Ka_Zi-p5kVJSxVILTLLZPVT6GuytSd3U2rR_FvD2LCAxEX_HFYwh6OXXL__PXv84Z1-fsGuELq6D68Z9p4VzUB5A410IHts7kxnV-2G4dUPvh0EfhyGFvTh9oLug2-4XfwECXwPu</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Haga, Hiroaki</creator><creator>Sato, Hidenori</creator><creator>Koseki, Ayumi</creator><creator>Saito, Takafumi</creator><creator>Okumoto, Kazuo</creator><creator>Hoshikawa, Kyoko</creator><creator>Katsumi, Tomohiro</creator><creator>Mizuno, Kei</creator><creator>Nishina, Taketo</creator><creator>Ueno, Yoshiyuki</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5623-4250</orcidid><orcidid>https://orcid.org/0000-0001-9355-1837</orcidid></search><sort><creationdate>20201105</creationdate><title>A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus</title><author>Haga, Hiroaki ; Sato, Hidenori ; Koseki, Ayumi ; Saito, Takafumi ; Okumoto, Kazuo ; Hoshikawa, Kyoko ; Katsumi, Tomohiro ; Mizuno, Kei ; Nishina, Taketo ; Ueno, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-674ab8791caec9c349792caa1af64b4311b38f779c145262ed45c60a9f20223a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Analytical methods</topic><topic>Antiviral agents</topic><topic>Antiviral Agents - therapeutic use</topic><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Big Data</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Diagnostic systems</topic><topic>Discriminant analysis</topic><topic>Drug Therapy, Combination - methods</topic><topic>Female</topic><topic>Gastroenterology</topic><topic>Gene sequencing</topic><topic>Genetic aspects</topic><topic>Genetic Variation - genetics</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Health aspects</topic><topic>Hepacivirus - drug effects</topic><topic>Hepacivirus - genetics</topic><topic>Hepatitis</topic><topic>Hepatitis C</topic><topic>Hepatitis C - drug therapy</topic><topic>Hepatitis C - virology</topic><topic>Hepatitis C virus</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine and health sciences</topic><topic>Model testing</topic><topic>Multilayers</topic><topic>Neural Networks, Computer</topic><topic>Next-generation sequencing</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Viral - genetics</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Sustained Virologic Response</topic><topic>Testing</topic><topic>Training</topic><topic>University faculty</topic><topic>Viruses</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haga, Hiroaki</creatorcontrib><creatorcontrib>Sato, Hidenori</creatorcontrib><creatorcontrib>Koseki, Ayumi</creatorcontrib><creatorcontrib>Saito, Takafumi</creatorcontrib><creatorcontrib>Okumoto, Kazuo</creatorcontrib><creatorcontrib>Hoshikawa, Kyoko</creatorcontrib><creatorcontrib>Katsumi, Tomohiro</creatorcontrib><creatorcontrib>Mizuno, Kei</creatorcontrib><creatorcontrib>Nishina, Taketo</creatorcontrib><creatorcontrib>Ueno, Yoshiyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haga, Hiroaki</au><au>Sato, Hidenori</au><au>Koseki, Ayumi</au><au>Saito, Takafumi</au><au>Okumoto, Kazuo</au><au>Hoshikawa, Kyoko</au><au>Katsumi, Tomohiro</au><au>Mizuno, Kei</au><au>Nishina, Taketo</au><au>Ueno, Yoshiyuki</au><au>Kanda, Tatsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242028</spage><epage>e0242028</epage><pages>e0242028-e0242028</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In recent years, the development of diagnostics using artificial intelligence (AI) has been remarkable. AI algorithms can go beyond human reasoning and build diagnostic models from a number of complex combinations. Using next-generation sequencing technology, we identified hepatitis C virus (HCV) variants resistant to directing-acting antivirals (DAA) by whole genome sequencing of full-length HCV genomes, and applied these variants to various machine-learning algorithms to evaluate a preliminary predictive model. HCV genomic RNA was extracted from serum from 173 patients (109 with subsequent sustained virological response [SVR] and 64 without) before DAA treatment. HCV genomes from the 109 SVR and 64 non-SVR patients were randomly divided into a training data set (57 SVR and 29 non-SVR) and a validation-data set (52 SVR and 35 non-SVR). The training data set was subject to nine machine-learning algorithms selected to identify the optimized combination of functional variants in relation to SVR status following DAA therapy. Subsequently, the prediction model was tested by the validation-data set. The most accurate learning method was the support vector machine (SVM) algorithm (validation accuracy, 0.95; kappa statistic, 0.90; F-value, 0.94). The second-most accurate learning algorithm was Multi-layer perceptron. Unfortunately, Decision Tree, and Naive Bayes algorithms could not be fitted with our data set due to low accuracy (< 0.8). Conclusively, with an accuracy rate of 95.4% in the generalization performance evaluation, SVM was identified as the best algorithm. Analytical methods based on genomic analysis and the construction of a predictive model by machine-learning may be applicable to the selection of the optimal treatment for other viral infections and cancer.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33152046</pmid><doi>10.1371/journal.pone.0242028</doi><tpages>e0242028</tpages><orcidid>https://orcid.org/0000-0001-5623-4250</orcidid><orcidid>https://orcid.org/0000-0001-9355-1837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-11, Vol.15 (11), p.e0242028-e0242028 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2457962002 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aged Algorithms Analytical methods Antiviral agents Antiviral Agents - therapeutic use Artificial Intelligence Bayes Theorem Bayesian analysis Big Data Biology and Life Sciences Computer and Information Sciences Datasets Decision trees Diagnostic systems Discriminant analysis Drug Therapy, Combination - methods Female Gastroenterology Gene sequencing Genetic aspects Genetic Variation - genetics Genome, Viral - genetics Genomes Genomic analysis Health aspects Hepacivirus - drug effects Hepacivirus - genetics Hepatitis Hepatitis C Hepatitis C - drug therapy Hepatitis C - virology Hepatitis C virus Humans Identification and classification Learning algorithms Machine Learning Male Medicine Medicine and health sciences Model testing Multilayers Neural Networks, Computer Next-generation sequencing Patients Performance evaluation Physical Sciences Prediction models Research and Analysis Methods Ribonucleic acid RNA RNA, Viral - genetics Statistical analysis Statistics Support Vector Machine Support vector machines Sustained Virologic Response Testing Training University faculty Viruses Whole genome sequencing |
title | A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning-based%20treatment%20prediction%20model%20using%20whole%20genome%20variants%20of%20hepatitis%20C%20virus&rft.jtitle=PloS%20one&rft.au=Haga,%20Hiroaki&rft.date=2020-11-05&rft.volume=15&rft.issue=11&rft.spage=e0242028&rft.epage=e0242028&rft.pages=e0242028-e0242028&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242028&rft_dat=%3Cgale_plos_%3EA640707105%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457962002&rft_id=info:pmid/33152046&rft_galeid=A640707105&rft_doaj_id=oai_doaj_org_article_469b2ea1fd3940dba348d7f2794db829&rfr_iscdi=true |