Efficient simulation of non-Markovian dynamics on complex networks

We study continuous-time multi-agent models, where agents interact according to a network topology. At any point in time, each agent occupies a specific local node state. Agents change their state at random through interactions with neighboring agents. The time until a transition happens can follow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-10, Vol.15 (10), p.e0241394-e0241394
Hauptverfasser: Großmann, Gerrit, Bortolussi, Luca, Wolf, Verena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0241394
container_issue 10
container_start_page e0241394
container_title PloS one
container_volume 15
creator Großmann, Gerrit
Bortolussi, Luca
Wolf, Verena
description We study continuous-time multi-agent models, where agents interact according to a network topology. At any point in time, each agent occupies a specific local node state. Agents change their state at random through interactions with neighboring agents. The time until a transition happens can follow an arbitrary probability density. Stochastic (Monte-Carlo) simulations are often the preferred-sometimes the only feasible-approach to study the complex emerging dynamical patterns of such systems. However, each simulation run comes with high computational costs mostly due to updating the instantaneous rates of interconnected agents after each transition. This work proposes a stochastic rejection-based, event-driven simulation algorithm that scales extremely well with the size and connectivity of the underlying contact network and produces statistically correct samples. We demonstrate the effectiveness of our method on different information spreading models.
doi_str_mv 10.1371/journal.pone.0241394
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2456156398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639964765</galeid><doaj_id>oai_doaj_org_article_d94986a6334a4d96b60658b5077bc408</doaj_id><sourcerecordid>A639964765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4dc3fdc8235ed6b89861228fde9876b6d5cbef530f8adb86386a95fddc3d432d3</originalsourceid><addsrcrecordid>eNqNkltrFDEYhgdRbK3-A9EBQfRi18zkMMmNUEvVhUrB023I5LCbNpOsyUxt_70Zd1p2pBeSi4Tk-d7vkLconldgWcGmencRhuiFW26D10tQowoy9KA4rBisF6QG8OHe-aB4ktIFABhSQh4XBxBWNUaAHhYfTo2x0mrfl8l2gxO9Db4MpvTBL76IeBmurPCluvGiszKV-VGGbuv0del1_zvEy_S0eGSES_rZtB8VPz6efj_5vDg7_7Q6OT5bSMLqfoGUhEZJWkOsFWkpo6Sqa2qUZrQhLVFYttpgCAwVqqUklyoYNiqHKQRrBY-KlzvdrQuJT-0nXiNMKkwgo5lY7QgVxAXfRtuJeMODsPzvRYhrLmJvpdNcMZQLEARCJJBiOT8gmLYYNE0r82Sy1vsp29B2Wsk8oSjcTHT-4u2Gr8MVbzCjqBkF3kwCMfwadOp5Z5PUzgmvw7CrG1U1oDijr_5B7-9uotYiN2C9CTmvHEX5cQYYQQ0ZtZb3UHkpnT8we8XYfD8LeDsLyEyvr_u1GFLiq29f_589_zlnX--xGy1cv0nBDaPB0hxEO1DGkFLU5m7IFeCj1W-nwUer88nqOezF_gfdBd16G_4Bz9z4vQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456156398</pqid></control><display><type>article</type><title>Efficient simulation of non-Markovian dynamics on complex networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Großmann, Gerrit ; Bortolussi, Luca ; Wolf, Verena</creator><contributor>Cherifi, Hocine</contributor><creatorcontrib>Großmann, Gerrit ; Bortolussi, Luca ; Wolf, Verena ; Cherifi, Hocine</creatorcontrib><description>We study continuous-time multi-agent models, where agents interact according to a network topology. At any point in time, each agent occupies a specific local node state. Agents change their state at random through interactions with neighboring agents. The time until a transition happens can follow an arbitrary probability density. Stochastic (Monte-Carlo) simulations are often the preferred-sometimes the only feasible-approach to study the complex emerging dynamical patterns of such systems. However, each simulation run comes with high computational costs mostly due to updating the instantaneous rates of interconnected agents after each transition. This work proposes a stochastic rejection-based, event-driven simulation algorithm that scales extremely well with the size and connectivity of the underlying contact network and produces statistically correct samples. We demonstrate the effectiveness of our method on different information spreading models.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0241394</identifier><identifier>PMID: 33125408</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Computer applications ; Computer Simulation ; Costs ; Dynamical systems ; Informatics ; Markov Chains ; Monte Carlo Method ; Monte Carlo simulation ; Multiagent systems ; Neighborhoods ; Network topologies ; Simulation ; Social networks ; Statistical analysis ; Statistical methods ; Stochastic models ; Stochastic Processes ; Stochasticity ; Topology</subject><ispartof>PloS one, 2020-10, Vol.15 (10), p.e0241394-e0241394</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Großmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Großmann et al 2020 Großmann et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4dc3fdc8235ed6b89861228fde9876b6d5cbef530f8adb86386a95fddc3d432d3</citedby><cites>FETCH-LOGICAL-c692t-4dc3fdc8235ed6b89861228fde9876b6d5cbef530f8adb86386a95fddc3d432d3</cites><orcidid>0000-0002-4933-447X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598478/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598478/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33125408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cherifi, Hocine</contributor><creatorcontrib>Großmann, Gerrit</creatorcontrib><creatorcontrib>Bortolussi, Luca</creatorcontrib><creatorcontrib>Wolf, Verena</creatorcontrib><title>Efficient simulation of non-Markovian dynamics on complex networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We study continuous-time multi-agent models, where agents interact according to a network topology. At any point in time, each agent occupies a specific local node state. Agents change their state at random through interactions with neighboring agents. The time until a transition happens can follow an arbitrary probability density. Stochastic (Monte-Carlo) simulations are often the preferred-sometimes the only feasible-approach to study the complex emerging dynamical patterns of such systems. However, each simulation run comes with high computational costs mostly due to updating the instantaneous rates of interconnected agents after each transition. This work proposes a stochastic rejection-based, event-driven simulation algorithm that scales extremely well with the size and connectivity of the underlying contact network and produces statistically correct samples. We demonstrate the effectiveness of our method on different information spreading models.</description><subject>Algorithms</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Costs</subject><subject>Dynamical systems</subject><subject>Informatics</subject><subject>Markov Chains</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Multiagent systems</subject><subject>Neighborhoods</subject><subject>Network topologies</subject><subject>Simulation</subject><subject>Social networks</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><subject>Topology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltrFDEYhgdRbK3-A9EBQfRi18zkMMmNUEvVhUrB023I5LCbNpOsyUxt_70Zd1p2pBeSi4Tk-d7vkLconldgWcGmencRhuiFW26D10tQowoy9KA4rBisF6QG8OHe-aB4ktIFABhSQh4XBxBWNUaAHhYfTo2x0mrfl8l2gxO9Db4MpvTBL76IeBmurPCluvGiszKV-VGGbuv0del1_zvEy_S0eGSES_rZtB8VPz6efj_5vDg7_7Q6OT5bSMLqfoGUhEZJWkOsFWkpo6Sqa2qUZrQhLVFYttpgCAwVqqUklyoYNiqHKQRrBY-KlzvdrQuJT-0nXiNMKkwgo5lY7QgVxAXfRtuJeMODsPzvRYhrLmJvpdNcMZQLEARCJJBiOT8gmLYYNE0r82Sy1vsp29B2Wsk8oSjcTHT-4u2Gr8MVbzCjqBkF3kwCMfwadOp5Z5PUzgmvw7CrG1U1oDijr_5B7-9uotYiN2C9CTmvHEX5cQYYQQ0ZtZb3UHkpnT8we8XYfD8LeDsLyEyvr_u1GFLiq29f_589_zlnX--xGy1cv0nBDaPB0hxEO1DGkFLU5m7IFeCj1W-nwUer88nqOezF_gfdBd16G_4Bz9z4vQ</recordid><startdate>20201030</startdate><enddate>20201030</enddate><creator>Großmann, Gerrit</creator><creator>Bortolussi, Luca</creator><creator>Wolf, Verena</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4933-447X</orcidid></search><sort><creationdate>20201030</creationdate><title>Efficient simulation of non-Markovian dynamics on complex networks</title><author>Großmann, Gerrit ; Bortolussi, Luca ; Wolf, Verena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4dc3fdc8235ed6b89861228fde9876b6d5cbef530f8adb86386a95fddc3d432d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Costs</topic><topic>Dynamical systems</topic><topic>Informatics</topic><topic>Markov Chains</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Multiagent systems</topic><topic>Neighborhoods</topic><topic>Network topologies</topic><topic>Simulation</topic><topic>Social networks</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Großmann, Gerrit</creatorcontrib><creatorcontrib>Bortolussi, Luca</creatorcontrib><creatorcontrib>Wolf, Verena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Großmann, Gerrit</au><au>Bortolussi, Luca</au><au>Wolf, Verena</au><au>Cherifi, Hocine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient simulation of non-Markovian dynamics on complex networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-10-30</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>e0241394</spage><epage>e0241394</epage><pages>e0241394-e0241394</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We study continuous-time multi-agent models, where agents interact according to a network topology. At any point in time, each agent occupies a specific local node state. Agents change their state at random through interactions with neighboring agents. The time until a transition happens can follow an arbitrary probability density. Stochastic (Monte-Carlo) simulations are often the preferred-sometimes the only feasible-approach to study the complex emerging dynamical patterns of such systems. However, each simulation run comes with high computational costs mostly due to updating the instantaneous rates of interconnected agents after each transition. This work proposes a stochastic rejection-based, event-driven simulation algorithm that scales extremely well with the size and connectivity of the underlying contact network and produces statistically correct samples. We demonstrate the effectiveness of our method on different information spreading models.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33125408</pmid><doi>10.1371/journal.pone.0241394</doi><tpages>e0241394</tpages><orcidid>https://orcid.org/0000-0002-4933-447X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-10, Vol.15 (10), p.e0241394-e0241394
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2456156398
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Computer applications
Computer Simulation
Costs
Dynamical systems
Informatics
Markov Chains
Monte Carlo Method
Monte Carlo simulation
Multiagent systems
Neighborhoods
Network topologies
Simulation
Social networks
Statistical analysis
Statistical methods
Stochastic models
Stochastic Processes
Stochasticity
Topology
title Efficient simulation of non-Markovian dynamics on complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20simulation%20of%20non-Markovian%20dynamics%20on%20complex%20networks&rft.jtitle=PloS%20one&rft.au=Gro%C3%9Fmann,%20Gerrit&rft.date=2020-10-30&rft.volume=15&rft.issue=10&rft.spage=e0241394&rft.epage=e0241394&rft.pages=e0241394-e0241394&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0241394&rft_dat=%3Cgale_plos_%3EA639964765%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456156398&rft_id=info:pmid/33125408&rft_galeid=A639964765&rft_doaj_id=oai_doaj_org_article_d94986a6334a4d96b60658b5077bc408&rfr_iscdi=true