Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index
Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation an...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-10, Vol.15 (10), p.e0240986-e0240986 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0240986 |
---|---|
container_issue | 10 |
container_start_page | e0240986 |
container_title | PloS one |
container_volume | 15 |
creator | Cheikhi, Amin M Johnson, Zariel I Julian, Dana R Wheeler, Sarah Feghali-Bostwick, Carol Conley, Yvette P Lyons-Weiler, James Yates, Cecelia C |
description | Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression. |
doi_str_mv | 10.1371/journal.pone.0240986 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2453902551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639240727</galeid><doaj_id>oai_doaj_org_article_94b0260b044e467f930eab428d86029b</doaj_id><sourcerecordid>A639240727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-34c932f029db0a90d907fcde6669d00dd54d241d680338dbc6c35a250ab2e65d3</originalsourceid><addsrcrecordid>eNqNk8tq3DAUhk1padK0b1BaQ6G0i5nKkixbm0IIvQwEUnrbClk69ijI1kSyw8yuj155xgnjkkXxwtLRd37p3JLkZYaWGSmyD9du8J20y43rYIkwRbxkj5LTjBO8YBiRx0frk-RZCNcI5aRk7GlyQgjieYnxafLnmwdtVG9cl7o6DXAL3vS7VHY6DUPV7zYw2mtTeRdM16TaBJAB0mG_a50Gm5qudr4FnVa7cW1l28q94qgC295LBdYOVvo0HnizTRvoIKIats-TJ7W0AV5M_7Pk1-dPPy--Li6vvqwuzi8XitGsXxCqYjA1wlxXSHKkOSpqpYExxjVCWudUY5ppViJCSl0ppkgucY5khYHlmpwlrw-6G-uCmJIXBKY54QjneRaJ1YHQTl6LjTet9DvhpBF7g_ONkL43yoLgtEKYoQpRCpQVNScIZEVxqUsWn1hFrY_TbUMVE6Ogi0mwM9H5SWfWonG3oshLinERBd5NAt7dDBB60ZowZlF24Ib9u2mWY8pIRN_8gz4c3UQ1MgYwVmwsyygqzhnhsX-K_bXLB6j4aWiNip1Wm2ifObyfOUSmjxVv5BCCWP34_v_s1e85-_aIXYO0_To4O4xtFeYgPYAqNmjwUN8nOUNiHJS7bIhxUMQ0KNHt1XGB7p3uJoP8BXE8DxM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453902551</pqid></control><display><type>article</type><title>Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cheikhi, Amin M ; Johnson, Zariel I ; Julian, Dana R ; Wheeler, Sarah ; Feghali-Bostwick, Carol ; Conley, Yvette P ; Lyons-Weiler, James ; Yates, Cecelia C</creator><contributor>Wu, Minghua</contributor><creatorcontrib>Cheikhi, Amin M ; Johnson, Zariel I ; Julian, Dana R ; Wheeler, Sarah ; Feghali-Bostwick, Carol ; Conley, Yvette P ; Lyons-Weiler, James ; Yates, Cecelia C ; Wu, Minghua</creatorcontrib><description>Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0240986</identifier><identifier>PMID: 33095822</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Age Factors ; Algorithms ; Autoimmune diseases ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Biopsy ; Case-Control Studies ; Chemokines ; Datasets ; Disease ; Extracellular matrix ; Extracellular Matrix - genetics ; Fibrosis ; Fibrosis - genetics ; Gender ; Gene expression ; Gene Expression Profiling ; Genes ; Genetic aspects ; Health aspects ; Health promotion ; Humans ; Inflammation ; Inflammation - genetics ; Inflammation - metabolism ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; Medicine ; Medicine and Health Sciences ; Modelling ; Models, Biological ; Nursing schools ; Pathology ; Patients ; Quantitative analysis ; Scleroderma ; Scleroderma, Systemic - genetics ; Skin - pathology ; Supervision ; Systemic sclerosis</subject><ispartof>PloS one, 2020-10, Vol.15 (10), p.e0240986-e0240986</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Cheikhi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Cheikhi et al 2020 Cheikhi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-34c932f029db0a90d907fcde6669d00dd54d241d680338dbc6c35a250ab2e65d3</cites><orcidid>0000-0002-8240-7773 ; 0000-0001-9343-7508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584227/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584227/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33095822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wu, Minghua</contributor><creatorcontrib>Cheikhi, Amin M</creatorcontrib><creatorcontrib>Johnson, Zariel I</creatorcontrib><creatorcontrib>Julian, Dana R</creatorcontrib><creatorcontrib>Wheeler, Sarah</creatorcontrib><creatorcontrib>Feghali-Bostwick, Carol</creatorcontrib><creatorcontrib>Conley, Yvette P</creatorcontrib><creatorcontrib>Lyons-Weiler, James</creatorcontrib><creatorcontrib>Yates, Cecelia C</creatorcontrib><title>Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.</description><subject>Age</subject><subject>Age Factors</subject><subject>Algorithms</subject><subject>Autoimmune diseases</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Biopsy</subject><subject>Case-Control Studies</subject><subject>Chemokines</subject><subject>Datasets</subject><subject>Disease</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - genetics</subject><subject>Fibrosis</subject><subject>Fibrosis - genetics</subject><subject>Gender</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Health promotion</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammation - genetics</subject><subject>Inflammation - metabolism</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>Nursing schools</subject><subject>Pathology</subject><subject>Patients</subject><subject>Quantitative analysis</subject><subject>Scleroderma</subject><subject>Scleroderma, Systemic - genetics</subject><subject>Skin - pathology</subject><subject>Supervision</subject><subject>Systemic sclerosis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tq3DAUhk1padK0b1BaQ6G0i5nKkixbm0IIvQwEUnrbClk69ijI1kSyw8yuj155xgnjkkXxwtLRd37p3JLkZYaWGSmyD9du8J20y43rYIkwRbxkj5LTjBO8YBiRx0frk-RZCNcI5aRk7GlyQgjieYnxafLnmwdtVG9cl7o6DXAL3vS7VHY6DUPV7zYw2mtTeRdM16TaBJAB0mG_a50Gm5qudr4FnVa7cW1l28q94qgC295LBdYOVvo0HnizTRvoIKIats-TJ7W0AV5M_7Pk1-dPPy--Li6vvqwuzi8XitGsXxCqYjA1wlxXSHKkOSpqpYExxjVCWudUY5ppViJCSl0ppkgucY5khYHlmpwlrw-6G-uCmJIXBKY54QjneRaJ1YHQTl6LjTet9DvhpBF7g_ONkL43yoLgtEKYoQpRCpQVNScIZEVxqUsWn1hFrY_TbUMVE6Ogi0mwM9H5SWfWonG3oshLinERBd5NAt7dDBB60ZowZlF24Ib9u2mWY8pIRN_8gz4c3UQ1MgYwVmwsyygqzhnhsX-K_bXLB6j4aWiNip1Wm2ifObyfOUSmjxVv5BCCWP34_v_s1e85-_aIXYO0_To4O4xtFeYgPYAqNmjwUN8nOUNiHJS7bIhxUMQ0KNHt1XGB7p3uJoP8BXE8DxM</recordid><startdate>20201023</startdate><enddate>20201023</enddate><creator>Cheikhi, Amin M</creator><creator>Johnson, Zariel I</creator><creator>Julian, Dana R</creator><creator>Wheeler, Sarah</creator><creator>Feghali-Bostwick, Carol</creator><creator>Conley, Yvette P</creator><creator>Lyons-Weiler, James</creator><creator>Yates, Cecelia C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8240-7773</orcidid><orcidid>https://orcid.org/0000-0001-9343-7508</orcidid></search><sort><creationdate>20201023</creationdate><title>Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index</title><author>Cheikhi, Amin M ; Johnson, Zariel I ; Julian, Dana R ; Wheeler, Sarah ; Feghali-Bostwick, Carol ; Conley, Yvette P ; Lyons-Weiler, James ; Yates, Cecelia C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-34c932f029db0a90d907fcde6669d00dd54d241d680338dbc6c35a250ab2e65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Age Factors</topic><topic>Algorithms</topic><topic>Autoimmune diseases</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Biopsy</topic><topic>Case-Control Studies</topic><topic>Chemokines</topic><topic>Datasets</topic><topic>Disease</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - genetics</topic><topic>Fibrosis</topic><topic>Fibrosis - genetics</topic><topic>Gender</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Health promotion</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammation - genetics</topic><topic>Inflammation - metabolism</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>Nursing schools</topic><topic>Pathology</topic><topic>Patients</topic><topic>Quantitative analysis</topic><topic>Scleroderma</topic><topic>Scleroderma, Systemic - genetics</topic><topic>Skin - pathology</topic><topic>Supervision</topic><topic>Systemic sclerosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheikhi, Amin M</creatorcontrib><creatorcontrib>Johnson, Zariel I</creatorcontrib><creatorcontrib>Julian, Dana R</creatorcontrib><creatorcontrib>Wheeler, Sarah</creatorcontrib><creatorcontrib>Feghali-Bostwick, Carol</creatorcontrib><creatorcontrib>Conley, Yvette P</creatorcontrib><creatorcontrib>Lyons-Weiler, James</creatorcontrib><creatorcontrib>Yates, Cecelia C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheikhi, Amin M</au><au>Johnson, Zariel I</au><au>Julian, Dana R</au><au>Wheeler, Sarah</au><au>Feghali-Bostwick, Carol</au><au>Conley, Yvette P</au><au>Lyons-Weiler, James</au><au>Yates, Cecelia C</au><au>Wu, Minghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-10-23</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>e0240986</spage><epage>e0240986</epage><pages>e0240986-e0240986</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33095822</pmid><doi>10.1371/journal.pone.0240986</doi><tpages>e0240986</tpages><orcidid>https://orcid.org/0000-0002-8240-7773</orcidid><orcidid>https://orcid.org/0000-0001-9343-7508</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-10, Vol.15 (10), p.e0240986-e0240986 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2453902551 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Age Age Factors Algorithms Autoimmune diseases Bayes Theorem Bayesian analysis Biology and Life Sciences Biopsy Case-Control Studies Chemokines Datasets Disease Extracellular matrix Extracellular Matrix - genetics Fibrosis Fibrosis - genetics Gender Gene expression Gene Expression Profiling Genes Genetic aspects Health aspects Health promotion Humans Inflammation Inflammation - genetics Inflammation - metabolism Intercellular Signaling Peptides and Proteins - genetics Intercellular Signaling Peptides and Proteins - metabolism Medicine Medicine and Health Sciences Modelling Models, Biological Nursing schools Pathology Patients Quantitative analysis Scleroderma Scleroderma, Systemic - genetics Skin - pathology Supervision Systemic sclerosis |
title | Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20severity%20and%20subtype%20of%20fibrosing%20disease%20using%20model%20informed%20by%20inflammation%20and%20extracellular%20matrix%20gene%20index&rft.jtitle=PloS%20one&rft.au=Cheikhi,%20Amin%20M&rft.date=2020-10-23&rft.volume=15&rft.issue=10&rft.spage=e0240986&rft.epage=e0240986&rft.pages=e0240986-e0240986&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0240986&rft_dat=%3Cgale_plos_%3EA639240727%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453902551&rft_id=info:pmid/33095822&rft_galeid=A639240727&rft_doaj_id=oai_doaj_org_article_94b0260b044e467f930eab428d86029b&rfr_iscdi=true |