The glucosyltransferase activity of C. difficile Toxin B is required for disease pathogenesis

Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2020-09, Vol.16 (9), p.e1008852
Hauptverfasser: Bilverstone, Terry W, Garland, Megan, Cave, Rory J, Kelly, Michelle L, Tholen, Martina, Bouley, Donna M, Kaye, Philip, Minton, Nigel P, Bogyo, Matthew, Kuehne, Sarah A, Melnyk, Roman A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e1008852
container_title PLoS pathogens
container_volume 16
creator Bilverstone, Terry W
Garland, Megan
Cave, Rory J
Kelly, Michelle L
Tholen, Martina
Bouley, Donna M
Kaye, Philip
Minton, Nigel P
Bogyo, Matthew
Kuehne, Sarah A
Melnyk, Roman A
description Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in vitro studies have shown that TcdB can, under certain circumstances, induce cellular toxicities that are independent of glucosyltransferase (GT) activity, calling into question the precise role of GT activity. Here, to establish the importance of GT activity in CDI disease pathogenesis, we generated the first described mutant strain of C. difficile producing glucosyltransferase-defective (GT-defective) toxin. Using allelic exchange (AE) technology, we first deleted tcdA in C. difficile 630Δerm and subsequently introduced a deactivating D270N substitution in the GT domain of TcdB. To examine the role of GT activity in vivo, we tested each strain in two different animal models of CDI pathogenesis. In the non-lethal murine model of infection, the GT-defective mutant induced minimal pathology in host tissues as compared to the profound caecal inflammation seen in the wild-type and 630ΔermΔtcdA (ΔtcdA) strains. In the more sensitive hamster model of CDI, whereas hamsters in the wild-type or ΔtcdA groups succumbed to fulminant infection within 4 days, all hamsters infected with the GT-defective mutant survived the 10-day infection period without primary symptoms of CDI or evidence of caecal inflammation. These data demonstrate that GT activity is indispensable for disease pathogenesis and reaffirm its central role in disease and its importance as a therapeutic target for small-molecule inhibition.
doi_str_mv 10.1371/journal.ppat.1008852
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2451547363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638004611</galeid><doaj_id>oai_doaj_org_article_a157c6602b164a1b842cd03189db0e84</doaj_id><sourcerecordid>A638004611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5762-851fe5e9e962aa832bd643eac73fc57c8afbd06740467f64e51fb6a5188249973</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBY4sRhgx07tnNBKis-VqpAguWILMcZZ73Kxls7qbr_Hi-bVo0EB-SDLft53xnPTJa9JDgnVJB3Wz-GXnf5fq-HnGAsZVk8ys5JWdKFoII9fnA-y57FuMWYEUr40-yMFhXHFSXn2a_1BlDbjcbHQzcE3UcLQUdA2gzuxg0H5C1a5qhx1jrjOkBrf-t69AG5iAJcjy5Ag6wPiYhwFKZ0Nr6FHqKLz7MnVncRXkz7Rfbz08f18svi6tvn1fLyamFKwYuFLImFEiqoeKG1pEXdcEZBG0FtIozUtm4wFwwzLixnkPia65JIWbCqEvQie33y3Xc-qqkyURWsJCUTlNNErE5E4_VW7YPb6XBQXjv158KHVukwONOB0iSF5BwXNeFMk1qywjSYElk1NQbJktf7KdpY76Ax0KfCdTPT-UvvNqr1N0qUlAghk8GbySD46xHi8I-UJ6rVKSvXW5_MzM5Foy45lambnJBE5X-h0mpg54zvwaamzQVvZ4LEDHA7tHqMUa1-fP8P9uucZSfWBB9jAHtfEILVcWLvPqmOE6umiU2yVw-LeS-6G1H6G4NX5lE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451547363</pqid></control><display><type>article</type><title>The glucosyltransferase activity of C. difficile Toxin B is required for disease pathogenesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Bilverstone, Terry W ; Garland, Megan ; Cave, Rory J ; Kelly, Michelle L ; Tholen, Martina ; Bouley, Donna M ; Kaye, Philip ; Minton, Nigel P ; Bogyo, Matthew ; Kuehne, Sarah A ; Melnyk, Roman A</creator><contributor>McClane, Bruce A.</contributor><creatorcontrib>Bilverstone, Terry W ; Garland, Megan ; Cave, Rory J ; Kelly, Michelle L ; Tholen, Martina ; Bouley, Donna M ; Kaye, Philip ; Minton, Nigel P ; Bogyo, Matthew ; Kuehne, Sarah A ; Melnyk, Roman A ; McClane, Bruce A.</creatorcontrib><description>Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in vitro studies have shown that TcdB can, under certain circumstances, induce cellular toxicities that are independent of glucosyltransferase (GT) activity, calling into question the precise role of GT activity. Here, to establish the importance of GT activity in CDI disease pathogenesis, we generated the first described mutant strain of C. difficile producing glucosyltransferase-defective (GT-defective) toxin. Using allelic exchange (AE) technology, we first deleted tcdA in C. difficile 630Δerm and subsequently introduced a deactivating D270N substitution in the GT domain of TcdB. To examine the role of GT activity in vivo, we tested each strain in two different animal models of CDI pathogenesis. In the non-lethal murine model of infection, the GT-defective mutant induced minimal pathology in host tissues as compared to the profound caecal inflammation seen in the wild-type and 630ΔermΔtcdA (ΔtcdA) strains. In the more sensitive hamster model of CDI, whereas hamsters in the wild-type or ΔtcdA groups succumbed to fulminant infection within 4 days, all hamsters infected with the GT-defective mutant survived the 10-day infection period without primary symptoms of CDI or evidence of caecal inflammation. These data demonstrate that GT activity is indispensable for disease pathogenesis and reaffirm its central role in disease and its importance as a therapeutic target for small-molecule inhibition.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008852</identifier><identifier>PMID: 32960931</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal models ; Animals ; Apoptosis ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Toxins - genetics ; Bacterial Toxins - metabolism ; Biology and Life Sciences ; Clostridioides difficile - enzymology ; Clostridioides difficile - genetics ; Clostridioides difficile - pathogenicity ; Clostridium difficile ; Cricetinae ; Deactivation ; Defective mutant ; Disease Models, Animal ; Domains ; Enterocolitis, Pseudomembranous - enzymology ; Enterocolitis, Pseudomembranous - genetics ; Enterocolitis, Pseudomembranous - pathology ; Female ; Funding ; Gene Deletion ; Genetic aspects ; Glucosyltransferase ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Hamsters ; Health aspects ; Inactivation ; Infections ; Life sciences ; Male ; Medicine ; Medicine and Health Sciences ; Mice ; Pathogenesis ; Pathology ; Research and Analysis Methods ; Signs and symptoms ; Supervision ; Synthetic biology ; Toxicity ; Toxin B ; Toxins ; Transferases ; Virulence ; Virulence (Microbiology)</subject><ispartof>PLoS pathogens, 2020-09, Vol.16 (9), p.e1008852</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Bilverstone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Bilverstone et al 2020 Bilverstone et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5762-851fe5e9e962aa832bd643eac73fc57c8afbd06740467f64e51fb6a5188249973</citedby><cites>FETCH-LOGICAL-c5762-851fe5e9e962aa832bd643eac73fc57c8afbd06740467f64e51fb6a5188249973</cites><orcidid>0000-0002-0972-5978 ; 0000-0003-3753-4412 ; 0000-0001-6790-8433 ; 0000-0002-3564-2340 ; 0000-0002-9277-1261 ; 0000-0003-1284-0229 ; 0000-0002-7187-2362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531778/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531778/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32960931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>McClane, Bruce A.</contributor><creatorcontrib>Bilverstone, Terry W</creatorcontrib><creatorcontrib>Garland, Megan</creatorcontrib><creatorcontrib>Cave, Rory J</creatorcontrib><creatorcontrib>Kelly, Michelle L</creatorcontrib><creatorcontrib>Tholen, Martina</creatorcontrib><creatorcontrib>Bouley, Donna M</creatorcontrib><creatorcontrib>Kaye, Philip</creatorcontrib><creatorcontrib>Minton, Nigel P</creatorcontrib><creatorcontrib>Bogyo, Matthew</creatorcontrib><creatorcontrib>Kuehne, Sarah A</creatorcontrib><creatorcontrib>Melnyk, Roman A</creatorcontrib><title>The glucosyltransferase activity of C. difficile Toxin B is required for disease pathogenesis</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in vitro studies have shown that TcdB can, under certain circumstances, induce cellular toxicities that are independent of glucosyltransferase (GT) activity, calling into question the precise role of GT activity. Here, to establish the importance of GT activity in CDI disease pathogenesis, we generated the first described mutant strain of C. difficile producing glucosyltransferase-defective (GT-defective) toxin. Using allelic exchange (AE) technology, we first deleted tcdA in C. difficile 630Δerm and subsequently introduced a deactivating D270N substitution in the GT domain of TcdB. To examine the role of GT activity in vivo, we tested each strain in two different animal models of CDI pathogenesis. In the non-lethal murine model of infection, the GT-defective mutant induced minimal pathology in host tissues as compared to the profound caecal inflammation seen in the wild-type and 630ΔermΔtcdA (ΔtcdA) strains. In the more sensitive hamster model of CDI, whereas hamsters in the wild-type or ΔtcdA groups succumbed to fulminant infection within 4 days, all hamsters infected with the GT-defective mutant survived the 10-day infection period without primary symptoms of CDI or evidence of caecal inflammation. These data demonstrate that GT activity is indispensable for disease pathogenesis and reaffirm its central role in disease and its importance as a therapeutic target for small-molecule inhibition.</description><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Clostridioides difficile - enzymology</subject><subject>Clostridioides difficile - genetics</subject><subject>Clostridioides difficile - pathogenicity</subject><subject>Clostridium difficile</subject><subject>Cricetinae</subject><subject>Deactivation</subject><subject>Defective mutant</subject><subject>Disease Models, Animal</subject><subject>Domains</subject><subject>Enterocolitis, Pseudomembranous - enzymology</subject><subject>Enterocolitis, Pseudomembranous - genetics</subject><subject>Enterocolitis, Pseudomembranous - pathology</subject><subject>Female</subject><subject>Funding</subject><subject>Gene Deletion</subject><subject>Genetic aspects</subject><subject>Glucosyltransferase</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Hamsters</subject><subject>Health aspects</subject><subject>Inactivation</subject><subject>Infections</subject><subject>Life sciences</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Research and Analysis Methods</subject><subject>Signs and symptoms</subject><subject>Supervision</subject><subject>Synthetic biology</subject><subject>Toxicity</subject><subject>Toxin B</subject><subject>Toxins</subject><subject>Transferases</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBY4sRhgx07tnNBKis-VqpAguWILMcZZ73Kxls7qbr_Hi-bVo0EB-SDLft53xnPTJa9JDgnVJB3Wz-GXnf5fq-HnGAsZVk8ys5JWdKFoII9fnA-y57FuMWYEUr40-yMFhXHFSXn2a_1BlDbjcbHQzcE3UcLQUdA2gzuxg0H5C1a5qhx1jrjOkBrf-t69AG5iAJcjy5Ag6wPiYhwFKZ0Nr6FHqKLz7MnVncRXkz7Rfbz08f18svi6tvn1fLyamFKwYuFLImFEiqoeKG1pEXdcEZBG0FtIozUtm4wFwwzLixnkPia65JIWbCqEvQie33y3Xc-qqkyURWsJCUTlNNErE5E4_VW7YPb6XBQXjv158KHVukwONOB0iSF5BwXNeFMk1qywjSYElk1NQbJktf7KdpY76Ax0KfCdTPT-UvvNqr1N0qUlAghk8GbySD46xHi8I-UJ6rVKSvXW5_MzM5Foy45lambnJBE5X-h0mpg54zvwaamzQVvZ4LEDHA7tHqMUa1-fP8P9uucZSfWBB9jAHtfEILVcWLvPqmOE6umiU2yVw-LeS-6G1H6G4NX5lE</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>Bilverstone, Terry W</creator><creator>Garland, Megan</creator><creator>Cave, Rory J</creator><creator>Kelly, Michelle L</creator><creator>Tholen, Martina</creator><creator>Bouley, Donna M</creator><creator>Kaye, Philip</creator><creator>Minton, Nigel P</creator><creator>Bogyo, Matthew</creator><creator>Kuehne, Sarah A</creator><creator>Melnyk, Roman A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0972-5978</orcidid><orcidid>https://orcid.org/0000-0003-3753-4412</orcidid><orcidid>https://orcid.org/0000-0001-6790-8433</orcidid><orcidid>https://orcid.org/0000-0002-3564-2340</orcidid><orcidid>https://orcid.org/0000-0002-9277-1261</orcidid><orcidid>https://orcid.org/0000-0003-1284-0229</orcidid><orcidid>https://orcid.org/0000-0002-7187-2362</orcidid></search><sort><creationdate>20200922</creationdate><title>The glucosyltransferase activity of C. difficile Toxin B is required for disease pathogenesis</title><author>Bilverstone, Terry W ; Garland, Megan ; Cave, Rory J ; Kelly, Michelle L ; Tholen, Martina ; Bouley, Donna M ; Kaye, Philip ; Minton, Nigel P ; Bogyo, Matthew ; Kuehne, Sarah A ; Melnyk, Roman A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5762-851fe5e9e962aa832bd643eac73fc57c8afbd06740467f64e51fb6a5188249973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Clostridioides difficile - enzymology</topic><topic>Clostridioides difficile - genetics</topic><topic>Clostridioides difficile - pathogenicity</topic><topic>Clostridium difficile</topic><topic>Cricetinae</topic><topic>Deactivation</topic><topic>Defective mutant</topic><topic>Disease Models, Animal</topic><topic>Domains</topic><topic>Enterocolitis, Pseudomembranous - enzymology</topic><topic>Enterocolitis, Pseudomembranous - genetics</topic><topic>Enterocolitis, Pseudomembranous - pathology</topic><topic>Female</topic><topic>Funding</topic><topic>Gene Deletion</topic><topic>Genetic aspects</topic><topic>Glucosyltransferase</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Hamsters</topic><topic>Health aspects</topic><topic>Inactivation</topic><topic>Infections</topic><topic>Life sciences</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Research and Analysis Methods</topic><topic>Signs and symptoms</topic><topic>Supervision</topic><topic>Synthetic biology</topic><topic>Toxicity</topic><topic>Toxin B</topic><topic>Toxins</topic><topic>Transferases</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilverstone, Terry W</creatorcontrib><creatorcontrib>Garland, Megan</creatorcontrib><creatorcontrib>Cave, Rory J</creatorcontrib><creatorcontrib>Kelly, Michelle L</creatorcontrib><creatorcontrib>Tholen, Martina</creatorcontrib><creatorcontrib>Bouley, Donna M</creatorcontrib><creatorcontrib>Kaye, Philip</creatorcontrib><creatorcontrib>Minton, Nigel P</creatorcontrib><creatorcontrib>Bogyo, Matthew</creatorcontrib><creatorcontrib>Kuehne, Sarah A</creatorcontrib><creatorcontrib>Melnyk, Roman A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilverstone, Terry W</au><au>Garland, Megan</au><au>Cave, Rory J</au><au>Kelly, Michelle L</au><au>Tholen, Martina</au><au>Bouley, Donna M</au><au>Kaye, Philip</au><au>Minton, Nigel P</au><au>Bogyo, Matthew</au><au>Kuehne, Sarah A</au><au>Melnyk, Roman A</au><au>McClane, Bruce A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The glucosyltransferase activity of C. difficile Toxin B is required for disease pathogenesis</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-09-22</date><risdate>2020</risdate><volume>16</volume><issue>9</issue><spage>e1008852</spage><pages>e1008852-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in vitro studies have shown that TcdB can, under certain circumstances, induce cellular toxicities that are independent of glucosyltransferase (GT) activity, calling into question the precise role of GT activity. Here, to establish the importance of GT activity in CDI disease pathogenesis, we generated the first described mutant strain of C. difficile producing glucosyltransferase-defective (GT-defective) toxin. Using allelic exchange (AE) technology, we first deleted tcdA in C. difficile 630Δerm and subsequently introduced a deactivating D270N substitution in the GT domain of TcdB. To examine the role of GT activity in vivo, we tested each strain in two different animal models of CDI pathogenesis. In the non-lethal murine model of infection, the GT-defective mutant induced minimal pathology in host tissues as compared to the profound caecal inflammation seen in the wild-type and 630ΔermΔtcdA (ΔtcdA) strains. In the more sensitive hamster model of CDI, whereas hamsters in the wild-type or ΔtcdA groups succumbed to fulminant infection within 4 days, all hamsters infected with the GT-defective mutant survived the 10-day infection period without primary symptoms of CDI or evidence of caecal inflammation. These data demonstrate that GT activity is indispensable for disease pathogenesis and reaffirm its central role in disease and its importance as a therapeutic target for small-molecule inhibition.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32960931</pmid><doi>10.1371/journal.ppat.1008852</doi><orcidid>https://orcid.org/0000-0002-0972-5978</orcidid><orcidid>https://orcid.org/0000-0003-3753-4412</orcidid><orcidid>https://orcid.org/0000-0001-6790-8433</orcidid><orcidid>https://orcid.org/0000-0002-3564-2340</orcidid><orcidid>https://orcid.org/0000-0002-9277-1261</orcidid><orcidid>https://orcid.org/0000-0003-1284-0229</orcidid><orcidid>https://orcid.org/0000-0002-7187-2362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2020-09, Vol.16 (9), p.e1008852
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2451547363
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS); PubMed Central
subjects Animal models
Animals
Apoptosis
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Toxins - genetics
Bacterial Toxins - metabolism
Biology and Life Sciences
Clostridioides difficile - enzymology
Clostridioides difficile - genetics
Clostridioides difficile - pathogenicity
Clostridium difficile
Cricetinae
Deactivation
Defective mutant
Disease Models, Animal
Domains
Enterocolitis, Pseudomembranous - enzymology
Enterocolitis, Pseudomembranous - genetics
Enterocolitis, Pseudomembranous - pathology
Female
Funding
Gene Deletion
Genetic aspects
Glucosyltransferase
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
Hamsters
Health aspects
Inactivation
Infections
Life sciences
Male
Medicine
Medicine and Health Sciences
Mice
Pathogenesis
Pathology
Research and Analysis Methods
Signs and symptoms
Supervision
Synthetic biology
Toxicity
Toxin B
Toxins
Transferases
Virulence
Virulence (Microbiology)
title The glucosyltransferase activity of C. difficile Toxin B is required for disease pathogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20glucosyltransferase%20activity%20of%20C.%20difficile%20Toxin%20B%20is%20required%20for%20disease%20pathogenesis&rft.jtitle=PLoS%20pathogens&rft.au=Bilverstone,%20Terry%20W&rft.date=2020-09-22&rft.volume=16&rft.issue=9&rft.spage=e1008852&rft.pages=e1008852-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008852&rft_dat=%3Cgale_plos_%3EA638004611%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451547363&rft_id=info:pmid/32960931&rft_galeid=A638004611&rft_doaj_id=oai_doaj_org_article_a157c6602b164a1b842cd03189db0e84&rfr_iscdi=true