Shape-to-graph mapping method for efficient characterization and classification of complex geometries in biological images
With the ever-increasing quality and quantity of imaging data in biomedical research comes the demand for computational methodologies that enable efficient and reliable automated extraction of the quantitative information contained within these images. One of the challenges in providing such methodo...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-09, Vol.16 (9), p.e1007758-e1007758 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007758 |
---|---|
container_issue | 9 |
container_start_page | e1007758 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Pilcher, William Yang, Xingyu Zhurikhina, Anastasia Chernaya, Olga Xu, Yinghan Qiu, Peng Tsygankov, Denis |
description | With the ever-increasing quality and quantity of imaging data in biomedical research comes the demand for computational methodologies that enable efficient and reliable automated extraction of the quantitative information contained within these images. One of the challenges in providing such methodology is the need for tailoring algorithms to the specifics of the data, limiting their areas of application. Here we present a broadly applicable approach to quantification and classification of complex shapes and patterns in biological or other multi-component formations. This approach integrates the mapping of all shape boundaries within an image onto a global information-rich graph and machine learning on the multidimensional measures of the graph. We demonstrated the power of this method by (1) extracting subtle structural differences from visually indistinguishable images in our phenotype rescue experiments using the endothelial tube formations assay, (2) training the algorithm to identify biophysical parameters underlying the formation of different multicellular networks in our simulation model of collective cell behavior, and (3) analyzing the response of U2OS cell cultures to a broad array of small molecule perturbations. |
doi_str_mv | 10.1371/journal.pcbi.1007758 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2451547214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638004576</galeid><doaj_id>oai_doaj_org_article_4c7c03022c484510a614dcdfa24ac462</doaj_id><sourcerecordid>A638004576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-d154859dd72664926e9b623b15bc8bcea223807200e1ef023198a0915965bf9c3</originalsourceid><addsrcrecordid>eNqVkk2LFDEQhhtR3HX0HwgGvOihx3x20hdhWfwYWBRcPYfqdHVPlu5Om_TIur_ejDOKI14kh4TKU2-9VVRRPGV0zYRmr27CLk4wrGfX-DWjVGtl7hXnTClRaqHM_T_eZ8WjlG4ozc-6elicCW4MM7U-L-6utzBjuYSyjzBvyQjz7KeejLhsQ0u6EAl2nXcep4W4LURwC0Z_B4sPE4GpJW6AlHxGDqHQERfGecBb0mPIMtFjIn4ijQ9D6DM2ED9Cj-lx8aCDIeGT470qvrx98_nyfXn18d3m8uKqdBWjS9kyJY2q21bzqpI1r7BuKi4aphpnGofAuTBUc0qRYUe5YLUBWjNVV6rpaidWxbOD7jyEZI9jS5ZLlZU1ZzITmwPRBrixc8z-4ncbwNufgRB7C3HxbkArnXZUUM6dNFmAQsVk69oOuAQns69V8fpYbdeM2Lo8twjDiejpz-S3tg_frJa1ZJxmgRdHgRi-7jAtdvTJ4TDAhGG39y2p1FRUJqPP_0L_3d36QPWQG_BTF3Jdl0-Lo3dhws7n-EWVp0il0lVOeHmSkJkFb5cedinZzfWn_2A_nLLywLoYUorY_Z4Ko3a_07_s2_1O2-NOix9ApeoC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451547214</pqid></control><display><type>article</type><title>Shape-to-graph mapping method for efficient characterization and classification of complex geometries in biological images</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pilcher, William ; Yang, Xingyu ; Zhurikhina, Anastasia ; Chernaya, Olga ; Xu, Yinghan ; Qiu, Peng ; Tsygankov, Denis</creator><contributor>Saucerman, Jeffrey J.</contributor><creatorcontrib>Pilcher, William ; Yang, Xingyu ; Zhurikhina, Anastasia ; Chernaya, Olga ; Xu, Yinghan ; Qiu, Peng ; Tsygankov, Denis ; Saucerman, Jeffrey J.</creatorcontrib><description>With the ever-increasing quality and quantity of imaging data in biomedical research comes the demand for computational methodologies that enable efficient and reliable automated extraction of the quantitative information contained within these images. One of the challenges in providing such methodology is the need for tailoring algorithms to the specifics of the data, limiting their areas of application. Here we present a broadly applicable approach to quantification and classification of complex shapes and patterns in biological or other multi-component formations. This approach integrates the mapping of all shape boundaries within an image onto a global information-rich graph and machine learning on the multidimensional measures of the graph. We demonstrated the power of this method by (1) extracting subtle structural differences from visually indistinguishable images in our phenotype rescue experiments using the endothelial tube formations assay, (2) training the algorithm to identify biophysical parameters underlying the formation of different multicellular networks in our simulation model of collective cell behavior, and (3) analyzing the response of U2OS cell cultures to a broad array of small molecule perturbations.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007758</identifier><identifier>PMID: 32881897</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Biomechanics ; Biomedical data ; Biomedical engineering ; Bit mapped graphics ; Classification ; Computational biology ; Computer and Information Sciences ; Computer applications ; Digital mapping ; Engineering ; Engineering and Technology ; Geometric figures ; Identification and classification ; Image classification ; Image quality ; Kinases ; Learning algorithms ; Machine learning ; Mapping ; Medical research ; Medicine ; Medicine and Health Sciences ; Methods ; Morphology ; Parameter identification ; Phenotypes ; Physical Sciences ; Research and Analysis Methods ; Software ; Technology application</subject><ispartof>PLoS computational biology, 2020-09, Vol.16 (9), p.e1007758-e1007758</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Pilcher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Pilcher et al 2020 Pilcher et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-d154859dd72664926e9b623b15bc8bcea223807200e1ef023198a0915965bf9c3</citedby><cites>FETCH-LOGICAL-c610t-d154859dd72664926e9b623b15bc8bcea223807200e1ef023198a0915965bf9c3</cites><orcidid>0000-0002-1961-1667 ; 0000-0003-3256-0734 ; 0000-0002-1180-3584 ; 0000-0002-1444-4169 ; 0000-0002-8544-4967 ; 0000-0001-6145-4522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494120/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494120/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Saucerman, Jeffrey J.</contributor><creatorcontrib>Pilcher, William</creatorcontrib><creatorcontrib>Yang, Xingyu</creatorcontrib><creatorcontrib>Zhurikhina, Anastasia</creatorcontrib><creatorcontrib>Chernaya, Olga</creatorcontrib><creatorcontrib>Xu, Yinghan</creatorcontrib><creatorcontrib>Qiu, Peng</creatorcontrib><creatorcontrib>Tsygankov, Denis</creatorcontrib><title>Shape-to-graph mapping method for efficient characterization and classification of complex geometries in biological images</title><title>PLoS computational biology</title><description>With the ever-increasing quality and quantity of imaging data in biomedical research comes the demand for computational methodologies that enable efficient and reliable automated extraction of the quantitative information contained within these images. One of the challenges in providing such methodology is the need for tailoring algorithms to the specifics of the data, limiting their areas of application. Here we present a broadly applicable approach to quantification and classification of complex shapes and patterns in biological or other multi-component formations. This approach integrates the mapping of all shape boundaries within an image onto a global information-rich graph and machine learning on the multidimensional measures of the graph. We demonstrated the power of this method by (1) extracting subtle structural differences from visually indistinguishable images in our phenotype rescue experiments using the endothelial tube formations assay, (2) training the algorithm to identify biophysical parameters underlying the formation of different multicellular networks in our simulation model of collective cell behavior, and (3) analyzing the response of U2OS cell cultures to a broad array of small molecule perturbations.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Biomechanics</subject><subject>Biomedical data</subject><subject>Biomedical engineering</subject><subject>Bit mapped graphics</subject><subject>Classification</subject><subject>Computational biology</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Digital mapping</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Geometric figures</subject><subject>Identification and classification</subject><subject>Image classification</subject><subject>Image quality</subject><subject>Kinases</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Morphology</subject><subject>Parameter identification</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Technology application</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk2LFDEQhhtR3HX0HwgGvOihx3x20hdhWfwYWBRcPYfqdHVPlu5Om_TIur_ejDOKI14kh4TKU2-9VVRRPGV0zYRmr27CLk4wrGfX-DWjVGtl7hXnTClRaqHM_T_eZ8WjlG4ozc-6elicCW4MM7U-L-6utzBjuYSyjzBvyQjz7KeejLhsQ0u6EAl2nXcep4W4LURwC0Z_B4sPE4GpJW6AlHxGDqHQERfGecBb0mPIMtFjIn4ijQ9D6DM2ED9Cj-lx8aCDIeGT470qvrx98_nyfXn18d3m8uKqdBWjS9kyJY2q21bzqpI1r7BuKi4aphpnGofAuTBUc0qRYUe5YLUBWjNVV6rpaidWxbOD7jyEZI9jS5ZLlZU1ZzITmwPRBrixc8z-4ncbwNufgRB7C3HxbkArnXZUUM6dNFmAQsVk69oOuAQns69V8fpYbdeM2Lo8twjDiejpz-S3tg_frJa1ZJxmgRdHgRi-7jAtdvTJ4TDAhGG39y2p1FRUJqPP_0L_3d36QPWQG_BTF3Jdl0-Lo3dhws7n-EWVp0il0lVOeHmSkJkFb5cedinZzfWn_2A_nLLywLoYUorY_Z4Ko3a_07_s2_1O2-NOix9ApeoC</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Pilcher, William</creator><creator>Yang, Xingyu</creator><creator>Zhurikhina, Anastasia</creator><creator>Chernaya, Olga</creator><creator>Xu, Yinghan</creator><creator>Qiu, Peng</creator><creator>Tsygankov, Denis</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1961-1667</orcidid><orcidid>https://orcid.org/0000-0003-3256-0734</orcidid><orcidid>https://orcid.org/0000-0002-1180-3584</orcidid><orcidid>https://orcid.org/0000-0002-1444-4169</orcidid><orcidid>https://orcid.org/0000-0002-8544-4967</orcidid><orcidid>https://orcid.org/0000-0001-6145-4522</orcidid></search><sort><creationdate>20200901</creationdate><title>Shape-to-graph mapping method for efficient characterization and classification of complex geometries in biological images</title><author>Pilcher, William ; Yang, Xingyu ; Zhurikhina, Anastasia ; Chernaya, Olga ; Xu, Yinghan ; Qiu, Peng ; Tsygankov, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-d154859dd72664926e9b623b15bc8bcea223807200e1ef023198a0915965bf9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Biomechanics</topic><topic>Biomedical data</topic><topic>Biomedical engineering</topic><topic>Bit mapped graphics</topic><topic>Classification</topic><topic>Computational biology</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Digital mapping</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Geometric figures</topic><topic>Identification and classification</topic><topic>Image classification</topic><topic>Image quality</topic><topic>Kinases</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Morphology</topic><topic>Parameter identification</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pilcher, William</creatorcontrib><creatorcontrib>Yang, Xingyu</creatorcontrib><creatorcontrib>Zhurikhina, Anastasia</creatorcontrib><creatorcontrib>Chernaya, Olga</creatorcontrib><creatorcontrib>Xu, Yinghan</creatorcontrib><creatorcontrib>Qiu, Peng</creatorcontrib><creatorcontrib>Tsygankov, Denis</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pilcher, William</au><au>Yang, Xingyu</au><au>Zhurikhina, Anastasia</au><au>Chernaya, Olga</au><au>Xu, Yinghan</au><au>Qiu, Peng</au><au>Tsygankov, Denis</au><au>Saucerman, Jeffrey J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape-to-graph mapping method for efficient characterization and classification of complex geometries in biological images</atitle><jtitle>PLoS computational biology</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>16</volume><issue>9</issue><spage>e1007758</spage><epage>e1007758</epage><pages>e1007758-e1007758</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>With the ever-increasing quality and quantity of imaging data in biomedical research comes the demand for computational methodologies that enable efficient and reliable automated extraction of the quantitative information contained within these images. One of the challenges in providing such methodology is the need for tailoring algorithms to the specifics of the data, limiting their areas of application. Here we present a broadly applicable approach to quantification and classification of complex shapes and patterns in biological or other multi-component formations. This approach integrates the mapping of all shape boundaries within an image onto a global information-rich graph and machine learning on the multidimensional measures of the graph. We demonstrated the power of this method by (1) extracting subtle structural differences from visually indistinguishable images in our phenotype rescue experiments using the endothelial tube formations assay, (2) training the algorithm to identify biophysical parameters underlying the formation of different multicellular networks in our simulation model of collective cell behavior, and (3) analyzing the response of U2OS cell cultures to a broad array of small molecule perturbations.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32881897</pmid><doi>10.1371/journal.pcbi.1007758</doi><orcidid>https://orcid.org/0000-0002-1961-1667</orcidid><orcidid>https://orcid.org/0000-0003-3256-0734</orcidid><orcidid>https://orcid.org/0000-0002-1180-3584</orcidid><orcidid>https://orcid.org/0000-0002-1444-4169</orcidid><orcidid>https://orcid.org/0000-0002-8544-4967</orcidid><orcidid>https://orcid.org/0000-0001-6145-4522</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-09, Vol.16 (9), p.e1007758-e1007758 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2451547214 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Biology and Life Sciences Biomechanics Biomedical data Biomedical engineering Bit mapped graphics Classification Computational biology Computer and Information Sciences Computer applications Digital mapping Engineering Engineering and Technology Geometric figures Identification and classification Image classification Image quality Kinases Learning algorithms Machine learning Mapping Medical research Medicine Medicine and Health Sciences Methods Morphology Parameter identification Phenotypes Physical Sciences Research and Analysis Methods Software Technology application |
title | Shape-to-graph mapping method for efficient characterization and classification of complex geometries in biological images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape-to-graph%20mapping%20method%20for%20efficient%20characterization%20and%20classification%20of%20complex%20geometries%20in%20biological%20images&rft.jtitle=PLoS%20computational%20biology&rft.au=Pilcher,%20William&rft.date=2020-09-01&rft.volume=16&rft.issue=9&rft.spage=e1007758&rft.epage=e1007758&rft.pages=e1007758-e1007758&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007758&rft_dat=%3Cgale_plos_%3EA638004576%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451547214&rft_id=info:pmid/32881897&rft_galeid=A638004576&rft_doaj_id=oai_doaj_org_article_4c7c03022c484510a614dcdfa24ac462&rfr_iscdi=true |