Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks

Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-10, Vol.15 (10), p.e0240628-e0240628
Hauptverfasser: Ying, Kuo-Ching, Lin, Shih-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0240628
container_issue 10
container_start_page e0240628
container_title PloS one
container_volume 15
creator Ying, Kuo-Ching
Lin, Shih-Wei
description Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and biological mechanisms in research on various diseases and the development of new medicines. Despite the performance of existing detection approaches being improved to some extent, there are still opportunities for further enhancements in the efficiency, accuracy, and robustness of such detection methods. Based on the uniqueness of the network-clustering problem in the context of PPINs, this study proposed a very effective and efficient model based on the Lin-Kernighan-Helsgaun algorithm for detecting PFMs in PPINs. To demonstrate the effectiveness and efficiency of the proposed model, computational experiments are performed using three different categories of species datasets. The computational results reveal that the proposed model outperforms existing detection techniques in terms of two key performance indices, i.e., the degree of polymerization inside PFMs (cohesion) and the deviation degree between PFMs (separation), while being very fast and robust. The proposed model can be used to help researchers decide whether to conduct further expensive and time-consuming biological experiments and to select target proteins from large-scale PPI data for further detailed research.
doi_str_mv 10.1371/journal.pone.0240628
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2450759727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638281521</galeid><doaj_id>oai_doaj_org_article_5c9bdb77c5d54cadb2f8ac2a11157798</doaj_id><sourcerecordid>A638281521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-cad350f85e9478778b8a5e5f0b4b48f9db9ae786444765d6e8f2e8724ebf97913</originalsourceid><addsrcrecordid>eNqNk0uP0zAQxyMEYpeFb4AgEhKCQ0v8ip0L0mrFo9KilXhdLceZtC6p3bUdWPj0OG26atAekA9xZn7zn_HYk2VPUTFHhKM3a9d7q7r51lmYF5gWJRb3slNUETwrcUHuH-1PskchrIuCEVGWD7MTQgoqqqo8zcIndWM25o-xy1y7FQTjbK5skwfYKq_i8Ns6nzcQQceB2noXwSRrb_XgVl2-cU3fQciTdfTODpSxEbzagbmF-Mv5H-Fx9qBVXYAn4_cs-_b-3deLj7PLqw-Li_PLmS4rHGdaNYQVrWBQUS44F7VQDFhb1LSmoq2aulLARUkp5SVrShAtBsExhbqteIXIWfZ8r7vtXJBjv4LElBWcVRzzRCz2ROPUWm692Sj_Wzpl5M7g_FIqH43uQDJd1U3NuWYNo6m0GrdCaawQQozzSiStt2O2vt5Ao8FGr7qJ6NRjzUou3U_JGSOEDuW-GgW8u-4hRLkxQUPXKQuu39WNEElXXyb0xT_o3acbqaVKBzC2dSmvHkTleUkEFojhIe38DiqtBjZGp8fVmmSfBLyeBCQmwk1cqj4Eufjy-f_Zq-9T9uURuwLVxVVwXT-8nTAF6R7U3oXgob1tMirkMBuHbshhNuQ4Gyns2fEF3QYdhoH8BWVIDDw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450759727</pqid></control><display><type>article</type><title>Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ying, Kuo-Ching ; Lin, Shih-Wei</creator><contributor>Cai, Ning</contributor><creatorcontrib>Ying, Kuo-Ching ; Lin, Shih-Wei ; Cai, Ning</creatorcontrib><description>Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and biological mechanisms in research on various diseases and the development of new medicines. Despite the performance of existing detection approaches being improved to some extent, there are still opportunities for further enhancements in the efficiency, accuracy, and robustness of such detection methods. Based on the uniqueness of the network-clustering problem in the context of PPINs, this study proposed a very effective and efficient model based on the Lin-Kernighan-Helsgaun algorithm for detecting PFMs in PPINs. To demonstrate the effectiveness and efficiency of the proposed model, computational experiments are performed using three different categories of species datasets. The computational results reveal that the proposed model outperforms existing detection techniques in terms of two key performance indices, i.e., the degree of polymerization inside PFMs (cohesion) and the deviation degree between PFMs (separation), while being very fast and robust. The proposed model can be used to help researchers decide whether to conduct further expensive and time-consuming biological experiments and to select target proteins from large-scale PPI data for further detailed research.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0240628</identifier><identifier>PMID: 33048996</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biological properties ; Biology and Life Sciences ; Cluster Analysis ; Clustering ; Cohesion ; Computational Biology ; Computer and Information Sciences ; Computer applications ; Degree of polymerization ; Humans ; Literature reviews ; Methods ; Models, Biological ; Modules ; Performance indices ; Physical Sciences ; Protein interaction ; Protein Interaction Mapping - methods ; Protein Interaction Maps ; Protein research ; Protein-protein interactions ; Proteins ; Research and Analysis Methods ; Separation ; Separation (Technology) ; Signal transduction</subject><ispartof>PloS one, 2020-10, Vol.15 (10), p.e0240628-e0240628</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Ying, Lin. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Ying, Lin 2020 Ying, Lin</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-cad350f85e9478778b8a5e5f0b4b48f9db9ae786444765d6e8f2e8724ebf97913</citedby><cites>FETCH-LOGICAL-c692t-cad350f85e9478778b8a5e5f0b4b48f9db9ae786444765d6e8f2e8724ebf97913</cites><orcidid>0000-0003-1343-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553341/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553341/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33048996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cai, Ning</contributor><creatorcontrib>Ying, Kuo-Ching</creatorcontrib><creatorcontrib>Lin, Shih-Wei</creatorcontrib><title>Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and biological mechanisms in research on various diseases and the development of new medicines. Despite the performance of existing detection approaches being improved to some extent, there are still opportunities for further enhancements in the efficiency, accuracy, and robustness of such detection methods. Based on the uniqueness of the network-clustering problem in the context of PPINs, this study proposed a very effective and efficient model based on the Lin-Kernighan-Helsgaun algorithm for detecting PFMs in PPINs. To demonstrate the effectiveness and efficiency of the proposed model, computational experiments are performed using three different categories of species datasets. The computational results reveal that the proposed model outperforms existing detection techniques in terms of two key performance indices, i.e., the degree of polymerization inside PFMs (cohesion) and the deviation degree between PFMs (separation), while being very fast and robust. The proposed model can be used to help researchers decide whether to conduct further expensive and time-consuming biological experiments and to select target proteins from large-scale PPI data for further detailed research.</description><subject>Algorithms</subject><subject>Biological properties</subject><subject>Biology and Life Sciences</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Cohesion</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Degree of polymerization</subject><subject>Humans</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Modules</subject><subject>Performance indices</subject><subject>Physical Sciences</subject><subject>Protein interaction</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Interaction Maps</subject><subject>Protein research</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Separation</subject><subject>Separation (Technology)</subject><subject>Signal transduction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0uP0zAQxyMEYpeFb4AgEhKCQ0v8ip0L0mrFo9KilXhdLceZtC6p3bUdWPj0OG26atAekA9xZn7zn_HYk2VPUTFHhKM3a9d7q7r51lmYF5gWJRb3slNUETwrcUHuH-1PskchrIuCEVGWD7MTQgoqqqo8zcIndWM25o-xy1y7FQTjbK5skwfYKq_i8Ns6nzcQQceB2noXwSRrb_XgVl2-cU3fQciTdfTODpSxEbzagbmF-Mv5H-Fx9qBVXYAn4_cs-_b-3deLj7PLqw-Li_PLmS4rHGdaNYQVrWBQUS44F7VQDFhb1LSmoq2aulLARUkp5SVrShAtBsExhbqteIXIWfZ8r7vtXJBjv4LElBWcVRzzRCz2ROPUWm692Sj_Wzpl5M7g_FIqH43uQDJd1U3NuWYNo6m0GrdCaawQQozzSiStt2O2vt5Ao8FGr7qJ6NRjzUou3U_JGSOEDuW-GgW8u-4hRLkxQUPXKQuu39WNEElXXyb0xT_o3acbqaVKBzC2dSmvHkTleUkEFojhIe38DiqtBjZGp8fVmmSfBLyeBCQmwk1cqj4Eufjy-f_Zq-9T9uURuwLVxVVwXT-8nTAF6R7U3oXgob1tMirkMBuHbshhNuQ4Gyns2fEF3QYdhoH8BWVIDDw</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Ying, Kuo-Ching</creator><creator>Lin, Shih-Wei</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1343-0838</orcidid></search><sort><creationdate>20201013</creationdate><title>Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks</title><author>Ying, Kuo-Ching ; Lin, Shih-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-cad350f85e9478778b8a5e5f0b4b48f9db9ae786444765d6e8f2e8724ebf97913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biological properties</topic><topic>Biology and Life Sciences</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Cohesion</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Degree of polymerization</topic><topic>Humans</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Modules</topic><topic>Performance indices</topic><topic>Physical Sciences</topic><topic>Protein interaction</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Interaction Maps</topic><topic>Protein research</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Separation</topic><topic>Separation (Technology)</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Kuo-Ching</creatorcontrib><creatorcontrib>Lin, Shih-Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying, Kuo-Ching</au><au>Lin, Shih-Wei</au><au>Cai, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>e0240628</spage><epage>e0240628</epage><pages>e0240628-e0240628</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and biological mechanisms in research on various diseases and the development of new medicines. Despite the performance of existing detection approaches being improved to some extent, there are still opportunities for further enhancements in the efficiency, accuracy, and robustness of such detection methods. Based on the uniqueness of the network-clustering problem in the context of PPINs, this study proposed a very effective and efficient model based on the Lin-Kernighan-Helsgaun algorithm for detecting PFMs in PPINs. To demonstrate the effectiveness and efficiency of the proposed model, computational experiments are performed using three different categories of species datasets. The computational results reveal that the proposed model outperforms existing detection techniques in terms of two key performance indices, i.e., the degree of polymerization inside PFMs (cohesion) and the deviation degree between PFMs (separation), while being very fast and robust. The proposed model can be used to help researchers decide whether to conduct further expensive and time-consuming biological experiments and to select target proteins from large-scale PPI data for further detailed research.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33048996</pmid><doi>10.1371/journal.pone.0240628</doi><tpages>e0240628</tpages><orcidid>https://orcid.org/0000-0003-1343-0838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-10, Vol.15 (10), p.e0240628-e0240628
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2450759727
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Biological properties
Biology and Life Sciences
Cluster Analysis
Clustering
Cohesion
Computational Biology
Computer and Information Sciences
Computer applications
Degree of polymerization
Humans
Literature reviews
Methods
Models, Biological
Modules
Performance indices
Physical Sciences
Protein interaction
Protein Interaction Mapping - methods
Protein Interaction Maps
Protein research
Protein-protein interactions
Proteins
Research and Analysis Methods
Separation
Separation (Technology)
Signal transduction
title Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20cohesion%20and%20separation%20for%20detecting%20protein%20functional%20modules%20in%20protein-protein%20interaction%20networks&rft.jtitle=PloS%20one&rft.au=Ying,%20Kuo-Ching&rft.date=2020-10-13&rft.volume=15&rft.issue=10&rft.spage=e0240628&rft.epage=e0240628&rft.pages=e0240628-e0240628&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0240628&rft_dat=%3Cgale_plos_%3EA638281521%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450759727&rft_id=info:pmid/33048996&rft_galeid=A638281521&rft_doaj_id=oai_doaj_org_article_5c9bdb77c5d54cadb2f8ac2a11157798&rfr_iscdi=true