Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks
Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and bi...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-10, Vol.15 (10), p.e0240628-e0240628 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0240628 |
---|---|
container_issue | 10 |
container_start_page | e0240628 |
container_title | PloS one |
container_volume | 15 |
creator | Ying, Kuo-Ching Lin, Shih-Wei |
description | Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and biological mechanisms in research on various diseases and the development of new medicines. Despite the performance of existing detection approaches being improved to some extent, there are still opportunities for further enhancements in the efficiency, accuracy, and robustness of such detection methods. Based on the uniqueness of the network-clustering problem in the context of PPINs, this study proposed a very effective and efficient model based on the Lin-Kernighan-Helsgaun algorithm for detecting PFMs in PPINs. To demonstrate the effectiveness and efficiency of the proposed model, computational experiments are performed using three different categories of species datasets. The computational results reveal that the proposed model outperforms existing detection techniques in terms of two key performance indices, i.e., the degree of polymerization inside PFMs (cohesion) and the deviation degree between PFMs (separation), while being very fast and robust. The proposed model can be used to help researchers decide whether to conduct further expensive and time-consuming biological experiments and to select target proteins from large-scale PPI data for further detailed research. |
doi_str_mv | 10.1371/journal.pone.0240628 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2450759727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638281521</galeid><doaj_id>oai_doaj_org_article_5c9bdb77c5d54cadb2f8ac2a11157798</doaj_id><sourcerecordid>A638281521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-cad350f85e9478778b8a5e5f0b4b48f9db9ae786444765d6e8f2e8724ebf97913</originalsourceid><addsrcrecordid>eNqNk0uP0zAQxyMEYpeFb4AgEhKCQ0v8ip0L0mrFo9KilXhdLceZtC6p3bUdWPj0OG26atAekA9xZn7zn_HYk2VPUTFHhKM3a9d7q7r51lmYF5gWJRb3slNUETwrcUHuH-1PskchrIuCEVGWD7MTQgoqqqo8zcIndWM25o-xy1y7FQTjbK5skwfYKq_i8Ns6nzcQQceB2noXwSRrb_XgVl2-cU3fQciTdfTODpSxEbzagbmF-Mv5H-Fx9qBVXYAn4_cs-_b-3deLj7PLqw-Li_PLmS4rHGdaNYQVrWBQUS44F7VQDFhb1LSmoq2aulLARUkp5SVrShAtBsExhbqteIXIWfZ8r7vtXJBjv4LElBWcVRzzRCz2ROPUWm692Sj_Wzpl5M7g_FIqH43uQDJd1U3NuWYNo6m0GrdCaawQQozzSiStt2O2vt5Ao8FGr7qJ6NRjzUou3U_JGSOEDuW-GgW8u-4hRLkxQUPXKQuu39WNEElXXyb0xT_o3acbqaVKBzC2dSmvHkTleUkEFojhIe38DiqtBjZGp8fVmmSfBLyeBCQmwk1cqj4Eufjy-f_Zq-9T9uURuwLVxVVwXT-8nTAF6R7U3oXgob1tMirkMBuHbshhNuQ4Gyns2fEF3QYdhoH8BWVIDDw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450759727</pqid></control><display><type>article</type><title>Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ying, Kuo-Ching ; Lin, Shih-Wei</creator><contributor>Cai, Ning</contributor><creatorcontrib>Ying, Kuo-Ching ; Lin, Shih-Wei ; Cai, Ning</creatorcontrib><description>Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and biological mechanisms in research on various diseases and the development of new medicines. Despite the performance of existing detection approaches being improved to some extent, there are still opportunities for further enhancements in the efficiency, accuracy, and robustness of such detection methods. Based on the uniqueness of the network-clustering problem in the context of PPINs, this study proposed a very effective and efficient model based on the Lin-Kernighan-Helsgaun algorithm for detecting PFMs in PPINs. To demonstrate the effectiveness and efficiency of the proposed model, computational experiments are performed using three different categories of species datasets. The computational results reveal that the proposed model outperforms existing detection techniques in terms of two key performance indices, i.e., the degree of polymerization inside PFMs (cohesion) and the deviation degree between PFMs (separation), while being very fast and robust. The proposed model can be used to help researchers decide whether to conduct further expensive and time-consuming biological experiments and to select target proteins from large-scale PPI data for further detailed research.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0240628</identifier><identifier>PMID: 33048996</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biological properties ; Biology and Life Sciences ; Cluster Analysis ; Clustering ; Cohesion ; Computational Biology ; Computer and Information Sciences ; Computer applications ; Degree of polymerization ; Humans ; Literature reviews ; Methods ; Models, Biological ; Modules ; Performance indices ; Physical Sciences ; Protein interaction ; Protein Interaction Mapping - methods ; Protein Interaction Maps ; Protein research ; Protein-protein interactions ; Proteins ; Research and Analysis Methods ; Separation ; Separation (Technology) ; Signal transduction</subject><ispartof>PloS one, 2020-10, Vol.15 (10), p.e0240628-e0240628</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Ying, Lin. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Ying, Lin 2020 Ying, Lin</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-cad350f85e9478778b8a5e5f0b4b48f9db9ae786444765d6e8f2e8724ebf97913</citedby><cites>FETCH-LOGICAL-c692t-cad350f85e9478778b8a5e5f0b4b48f9db9ae786444765d6e8f2e8724ebf97913</cites><orcidid>0000-0003-1343-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553341/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553341/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33048996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cai, Ning</contributor><creatorcontrib>Ying, Kuo-Ching</creatorcontrib><creatorcontrib>Lin, Shih-Wei</creatorcontrib><title>Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and biological mechanisms in research on various diseases and the development of new medicines. Despite the performance of existing detection approaches being improved to some extent, there are still opportunities for further enhancements in the efficiency, accuracy, and robustness of such detection methods. Based on the uniqueness of the network-clustering problem in the context of PPINs, this study proposed a very effective and efficient model based on the Lin-Kernighan-Helsgaun algorithm for detecting PFMs in PPINs. To demonstrate the effectiveness and efficiency of the proposed model, computational experiments are performed using three different categories of species datasets. The computational results reveal that the proposed model outperforms existing detection techniques in terms of two key performance indices, i.e., the degree of polymerization inside PFMs (cohesion) and the deviation degree between PFMs (separation), while being very fast and robust. The proposed model can be used to help researchers decide whether to conduct further expensive and time-consuming biological experiments and to select target proteins from large-scale PPI data for further detailed research.</description><subject>Algorithms</subject><subject>Biological properties</subject><subject>Biology and Life Sciences</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Cohesion</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Degree of polymerization</subject><subject>Humans</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Modules</subject><subject>Performance indices</subject><subject>Physical Sciences</subject><subject>Protein interaction</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Interaction Maps</subject><subject>Protein research</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Separation</subject><subject>Separation (Technology)</subject><subject>Signal transduction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0uP0zAQxyMEYpeFb4AgEhKCQ0v8ip0L0mrFo9KilXhdLceZtC6p3bUdWPj0OG26atAekA9xZn7zn_HYk2VPUTFHhKM3a9d7q7r51lmYF5gWJRb3slNUETwrcUHuH-1PskchrIuCEVGWD7MTQgoqqqo8zcIndWM25o-xy1y7FQTjbK5skwfYKq_i8Ns6nzcQQceB2noXwSRrb_XgVl2-cU3fQciTdfTODpSxEbzagbmF-Mv5H-Fx9qBVXYAn4_cs-_b-3deLj7PLqw-Li_PLmS4rHGdaNYQVrWBQUS44F7VQDFhb1LSmoq2aulLARUkp5SVrShAtBsExhbqteIXIWfZ8r7vtXJBjv4LElBWcVRzzRCz2ROPUWm692Sj_Wzpl5M7g_FIqH43uQDJd1U3NuWYNo6m0GrdCaawQQozzSiStt2O2vt5Ao8FGr7qJ6NRjzUou3U_JGSOEDuW-GgW8u-4hRLkxQUPXKQuu39WNEElXXyb0xT_o3acbqaVKBzC2dSmvHkTleUkEFojhIe38DiqtBjZGp8fVmmSfBLyeBCQmwk1cqj4Eufjy-f_Zq-9T9uURuwLVxVVwXT-8nTAF6R7U3oXgob1tMirkMBuHbshhNuQ4Gyns2fEF3QYdhoH8BWVIDDw</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Ying, Kuo-Ching</creator><creator>Lin, Shih-Wei</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1343-0838</orcidid></search><sort><creationdate>20201013</creationdate><title>Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks</title><author>Ying, Kuo-Ching ; Lin, Shih-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-cad350f85e9478778b8a5e5f0b4b48f9db9ae786444765d6e8f2e8724ebf97913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biological properties</topic><topic>Biology and Life Sciences</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Cohesion</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Degree of polymerization</topic><topic>Humans</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Modules</topic><topic>Performance indices</topic><topic>Physical Sciences</topic><topic>Protein interaction</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Interaction Maps</topic><topic>Protein research</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Separation</topic><topic>Separation (Technology)</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Kuo-Ching</creatorcontrib><creatorcontrib>Lin, Shih-Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying, Kuo-Ching</au><au>Lin, Shih-Wei</au><au>Cai, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>e0240628</spage><epage>e0240628</epage><pages>e0240628-e0240628</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Protein Function Module (PFM) identification in Protein-Protein Interaction Networks (PPINs) is one of the most important and challenging tasks in computational biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding of the functions, properties, and biological mechanisms in research on various diseases and the development of new medicines. Despite the performance of existing detection approaches being improved to some extent, there are still opportunities for further enhancements in the efficiency, accuracy, and robustness of such detection methods. Based on the uniqueness of the network-clustering problem in the context of PPINs, this study proposed a very effective and efficient model based on the Lin-Kernighan-Helsgaun algorithm for detecting PFMs in PPINs. To demonstrate the effectiveness and efficiency of the proposed model, computational experiments are performed using three different categories of species datasets. The computational results reveal that the proposed model outperforms existing detection techniques in terms of two key performance indices, i.e., the degree of polymerization inside PFMs (cohesion) and the deviation degree between PFMs (separation), while being very fast and robust. The proposed model can be used to help researchers decide whether to conduct further expensive and time-consuming biological experiments and to select target proteins from large-scale PPI data for further detailed research.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33048996</pmid><doi>10.1371/journal.pone.0240628</doi><tpages>e0240628</tpages><orcidid>https://orcid.org/0000-0003-1343-0838</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-10, Vol.15 (10), p.e0240628-e0240628 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2450759727 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Biological properties Biology and Life Sciences Cluster Analysis Clustering Cohesion Computational Biology Computer and Information Sciences Computer applications Degree of polymerization Humans Literature reviews Methods Models, Biological Modules Performance indices Physical Sciences Protein interaction Protein Interaction Mapping - methods Protein Interaction Maps Protein research Protein-protein interactions Proteins Research and Analysis Methods Separation Separation (Technology) Signal transduction |
title | Maximizing cohesion and separation for detecting protein functional modules in protein-protein interaction networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20cohesion%20and%20separation%20for%20detecting%20protein%20functional%20modules%20in%20protein-protein%20interaction%20networks&rft.jtitle=PloS%20one&rft.au=Ying,%20Kuo-Ching&rft.date=2020-10-13&rft.volume=15&rft.issue=10&rft.spage=e0240628&rft.epage=e0240628&rft.pages=e0240628-e0240628&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0240628&rft_dat=%3Cgale_plos_%3EA638281521%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450759727&rft_id=info:pmid/33048996&rft_galeid=A638281521&rft_doaj_id=oai_doaj_org_article_5c9bdb77c5d54cadb2f8ac2a11157798&rfr_iscdi=true |