FalseColor-Python: A rapid intensity-leveling and digital-staining package for fluorescence-based slide-free digital pathology

Slide-free digital pathology techniques, including nondestructive 3D microscopy, are gaining interest as alternatives to traditional slide-based histology. In order to facilitate clinical adoption of these fluorescence-based techniques, software methods have been developed to convert grayscale fluor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-10, Vol.15 (10), p.e0233198-e0233198
Hauptverfasser: Serafin, Robert, Xie, Weisi, Glaser, Adam K, Liu, Jonathan T C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0233198
container_issue 10
container_start_page e0233198
container_title PloS one
container_volume 15
creator Serafin, Robert
Xie, Weisi
Glaser, Adam K
Liu, Jonathan T C
description Slide-free digital pathology techniques, including nondestructive 3D microscopy, are gaining interest as alternatives to traditional slide-based histology. In order to facilitate clinical adoption of these fluorescence-based techniques, software methods have been developed to convert grayscale fluorescence images into color images that mimic the appearance of standard absorptive chromogens such as hematoxylin and eosin (H&E). However, these false-coloring algorithms often require manual and iterative adjustment of parameters, with results that can be inconsistent in the presence of intensity nonuniformities within an image and/or between specimens (intra- and inter-specimen variability). Here, we present an open-source (Python-based) rapid intensity-leveling and digital-staining package that is specifically designed to render two-channel fluorescence images (i.e. a fluorescent analog of H&E) to the traditional H&E color space for 2D and 3D microscopy datasets. However, this method can be easily tailored for other false-coloring needs. Our package offers (1) automated and uniform false coloring in spite of uneven staining within a large thick specimen, (2) consistent color-space representations that are robust to variations in staining and imaging conditions between different specimens, and (3) GPU-accelerated data processing to allow these methods to scale to large datasets. We demonstrate this platform by generating H&E-like images from cleared tissues that are fluorescently imaged in 3D with open-top light-sheet (OTLS) microscopy, and quantitatively characterizing the results in comparison to traditional slide-based H&E histology.
doi_str_mv 10.1371/journal.pone.0233198
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2447829981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A637120909</galeid><doaj_id>oai_doaj_org_article_074a612252cd4b34b86867486a2a2316</doaj_id><sourcerecordid>A637120909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4883e1a34b35f03c07f285df4721c7e7a5ed7e24bfd20eade278877d3c08b70d3</originalsourceid><addsrcrecordid>eNqNk02P0zAQhiMEYpfCP0AQCQnBIcWxk9jhgFRVLFRaaRFfV8uJJ6mLa3dtZ0Uv_Hbcbbpq0R6QD7Emz_vOeOxJkuc5muaE5u9WdnBG6OnGGpgiTEheswfJeV4TnFUYkYdH-7PkifcrhErCqupxckYIQnldl-fJnwuhPcytti77sg1La96ns9SJjZKpMgGMV2GbabgBrUyfCiNTqXoVhM58EMrsghvR_hI9pJ11aacH68C3YFrIGuFBpl4rCVnnAA7SqIiZtO23T5NH3a6AZ-N3kvy4-Ph9_jm7vPq0mM8us7aqccgKxgjkghQNKTtEWkQ7zErZFRTnLQUqSpAUcNF0EiMQEjBljFIZSdZQJMkkebn33Wjr-dg6z3FRUIbrmuWRWOwJacWKb5xaC7flVih-G7Cu58IF1WrgiBaiyjEucStjRUXDKlbRglUCC0zyKnp9GLMNzRpkbEZwQp-Ynv4xasl7e8NpiWscr3KSvBkNnL0ewAe-VrGnWgsDdritmxWojKVH9NU_6P2nG6lexAMo09mYt92Z8lkVXxNGNdp5Te-h4pKwVm18Z52K8RPB2xNBZAL8Dr0YvOeLb1__n736ecq-PmKXIHRYequHoKzxp2CxB1tnvXfQ3TU5R3w3Jodu8N2Y8HFMouzF8QXdiQ5zQf4CpaINzw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447829981</pqid></control><display><type>article</type><title>FalseColor-Python: A rapid intensity-leveling and digital-staining package for fluorescence-based slide-free digital pathology</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Serafin, Robert ; Xie, Weisi ; Glaser, Adam K ; Liu, Jonathan T C</creator><contributor>Lin, Jerry Chun-Wei</contributor><creatorcontrib>Serafin, Robert ; Xie, Weisi ; Glaser, Adam K ; Liu, Jonathan T C ; Lin, Jerry Chun-Wei</creatorcontrib><description>Slide-free digital pathology techniques, including nondestructive 3D microscopy, are gaining interest as alternatives to traditional slide-based histology. In order to facilitate clinical adoption of these fluorescence-based techniques, software methods have been developed to convert grayscale fluorescence images into color images that mimic the appearance of standard absorptive chromogens such as hematoxylin and eosin (H&amp;E). However, these false-coloring algorithms often require manual and iterative adjustment of parameters, with results that can be inconsistent in the presence of intensity nonuniformities within an image and/or between specimens (intra- and inter-specimen variability). Here, we present an open-source (Python-based) rapid intensity-leveling and digital-staining package that is specifically designed to render two-channel fluorescence images (i.e. a fluorescent analog of H&amp;E) to the traditional H&amp;E color space for 2D and 3D microscopy datasets. However, this method can be easily tailored for other false-coloring needs. Our package offers (1) automated and uniform false coloring in spite of uneven staining within a large thick specimen, (2) consistent color-space representations that are robust to variations in staining and imaging conditions between different specimens, and (3) GPU-accelerated data processing to allow these methods to scale to large datasets. We demonstrate this platform by generating H&amp;E-like images from cleared tissues that are fluorescently imaged in 3D with open-top light-sheet (OTLS) microscopy, and quantitatively characterizing the results in comparison to traditional slide-based H&amp;E histology.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0233198</identifier><identifier>PMID: 33001995</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Absorptivity ; Algorithms ; Biology and Life Sciences ; Clinical pathology ; Color ; Color imagery ; Color processing software ; Coloring ; Coloring Agents ; Computer and Information Sciences ; Data processing ; Datasets ; Digital imaging ; Equipment and supplies ; Fluorescence ; Fluorescence microscopy ; Freeware ; Histology ; Humans ; Image processing ; Imaging, Three-Dimensional - methods ; Leveling ; Mechanical engineering ; Medicine and Health Sciences ; Methods ; Microscopy ; Microscopy, Fluorescence - methods ; Nondestructive testing ; Open source software ; Pathology ; Pathology - methods ; Physical Sciences ; Research and Analysis Methods ; Software ; Source code ; Staining ; Staining and Labeling ; Stains &amp; staining ; Technology application</subject><ispartof>PloS one, 2020-10, Vol.15 (10), p.e0233198-e0233198</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Serafin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Serafin et al 2020 Serafin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4883e1a34b35f03c07f285df4721c7e7a5ed7e24bfd20eade278877d3c08b70d3</citedby><cites>FETCH-LOGICAL-c692t-4883e1a34b35f03c07f285df4721c7e7a5ed7e24bfd20eade278877d3c08b70d3</cites><orcidid>0000-0002-6646-353X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529223/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529223/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33001995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lin, Jerry Chun-Wei</contributor><creatorcontrib>Serafin, Robert</creatorcontrib><creatorcontrib>Xie, Weisi</creatorcontrib><creatorcontrib>Glaser, Adam K</creatorcontrib><creatorcontrib>Liu, Jonathan T C</creatorcontrib><title>FalseColor-Python: A rapid intensity-leveling and digital-staining package for fluorescence-based slide-free digital pathology</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Slide-free digital pathology techniques, including nondestructive 3D microscopy, are gaining interest as alternatives to traditional slide-based histology. In order to facilitate clinical adoption of these fluorescence-based techniques, software methods have been developed to convert grayscale fluorescence images into color images that mimic the appearance of standard absorptive chromogens such as hematoxylin and eosin (H&amp;E). However, these false-coloring algorithms often require manual and iterative adjustment of parameters, with results that can be inconsistent in the presence of intensity nonuniformities within an image and/or between specimens (intra- and inter-specimen variability). Here, we present an open-source (Python-based) rapid intensity-leveling and digital-staining package that is specifically designed to render two-channel fluorescence images (i.e. a fluorescent analog of H&amp;E) to the traditional H&amp;E color space for 2D and 3D microscopy datasets. However, this method can be easily tailored for other false-coloring needs. Our package offers (1) automated and uniform false coloring in spite of uneven staining within a large thick specimen, (2) consistent color-space representations that are robust to variations in staining and imaging conditions between different specimens, and (3) GPU-accelerated data processing to allow these methods to scale to large datasets. We demonstrate this platform by generating H&amp;E-like images from cleared tissues that are fluorescently imaged in 3D with open-top light-sheet (OTLS) microscopy, and quantitatively characterizing the results in comparison to traditional slide-based H&amp;E histology.</description><subject>Absorptivity</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Clinical pathology</subject><subject>Color</subject><subject>Color imagery</subject><subject>Color processing software</subject><subject>Coloring</subject><subject>Coloring Agents</subject><subject>Computer and Information Sciences</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Digital imaging</subject><subject>Equipment and supplies</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Freeware</subject><subject>Histology</subject><subject>Humans</subject><subject>Image processing</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Leveling</subject><subject>Mechanical engineering</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Nondestructive testing</subject><subject>Open source software</subject><subject>Pathology</subject><subject>Pathology - methods</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Source code</subject><subject>Staining</subject><subject>Staining and Labeling</subject><subject>Stains &amp; staining</subject><subject>Technology application</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk02P0zAQhiMEYpfCP0AQCQnBIcWxk9jhgFRVLFRaaRFfV8uJJ6mLa3dtZ0Uv_Hbcbbpq0R6QD7Emz_vOeOxJkuc5muaE5u9WdnBG6OnGGpgiTEheswfJeV4TnFUYkYdH-7PkifcrhErCqupxckYIQnldl-fJnwuhPcytti77sg1La96ns9SJjZKpMgGMV2GbabgBrUyfCiNTqXoVhM58EMrsghvR_hI9pJ11aacH68C3YFrIGuFBpl4rCVnnAA7SqIiZtO23T5NH3a6AZ-N3kvy4-Ph9_jm7vPq0mM8us7aqccgKxgjkghQNKTtEWkQ7zErZFRTnLQUqSpAUcNF0EiMQEjBljFIZSdZQJMkkebn33Wjr-dg6z3FRUIbrmuWRWOwJacWKb5xaC7flVih-G7Cu58IF1WrgiBaiyjEucStjRUXDKlbRglUCC0zyKnp9GLMNzRpkbEZwQp-Ynv4xasl7e8NpiWscr3KSvBkNnL0ewAe-VrGnWgsDdritmxWojKVH9NU_6P2nG6lexAMo09mYt92Z8lkVXxNGNdp5Te-h4pKwVm18Z52K8RPB2xNBZAL8Dr0YvOeLb1__n736ecq-PmKXIHRYequHoKzxp2CxB1tnvXfQ3TU5R3w3Jodu8N2Y8HFMouzF8QXdiQ5zQf4CpaINzw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Serafin, Robert</creator><creator>Xie, Weisi</creator><creator>Glaser, Adam K</creator><creator>Liu, Jonathan T C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6646-353X</orcidid></search><sort><creationdate>20201001</creationdate><title>FalseColor-Python: A rapid intensity-leveling and digital-staining package for fluorescence-based slide-free digital pathology</title><author>Serafin, Robert ; Xie, Weisi ; Glaser, Adam K ; Liu, Jonathan T C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4883e1a34b35f03c07f285df4721c7e7a5ed7e24bfd20eade278877d3c08b70d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorptivity</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Clinical pathology</topic><topic>Color</topic><topic>Color imagery</topic><topic>Color processing software</topic><topic>Coloring</topic><topic>Coloring Agents</topic><topic>Computer and Information Sciences</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Digital imaging</topic><topic>Equipment and supplies</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Freeware</topic><topic>Histology</topic><topic>Humans</topic><topic>Image processing</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Leveling</topic><topic>Mechanical engineering</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Nondestructive testing</topic><topic>Open source software</topic><topic>Pathology</topic><topic>Pathology - methods</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Source code</topic><topic>Staining</topic><topic>Staining and Labeling</topic><topic>Stains &amp; staining</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serafin, Robert</creatorcontrib><creatorcontrib>Xie, Weisi</creatorcontrib><creatorcontrib>Glaser, Adam K</creatorcontrib><creatorcontrib>Liu, Jonathan T C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serafin, Robert</au><au>Xie, Weisi</au><au>Glaser, Adam K</au><au>Liu, Jonathan T C</au><au>Lin, Jerry Chun-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FalseColor-Python: A rapid intensity-leveling and digital-staining package for fluorescence-based slide-free digital pathology</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>e0233198</spage><epage>e0233198</epage><pages>e0233198-e0233198</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Slide-free digital pathology techniques, including nondestructive 3D microscopy, are gaining interest as alternatives to traditional slide-based histology. In order to facilitate clinical adoption of these fluorescence-based techniques, software methods have been developed to convert grayscale fluorescence images into color images that mimic the appearance of standard absorptive chromogens such as hematoxylin and eosin (H&amp;E). However, these false-coloring algorithms often require manual and iterative adjustment of parameters, with results that can be inconsistent in the presence of intensity nonuniformities within an image and/or between specimens (intra- and inter-specimen variability). Here, we present an open-source (Python-based) rapid intensity-leveling and digital-staining package that is specifically designed to render two-channel fluorescence images (i.e. a fluorescent analog of H&amp;E) to the traditional H&amp;E color space for 2D and 3D microscopy datasets. However, this method can be easily tailored for other false-coloring needs. Our package offers (1) automated and uniform false coloring in spite of uneven staining within a large thick specimen, (2) consistent color-space representations that are robust to variations in staining and imaging conditions between different specimens, and (3) GPU-accelerated data processing to allow these methods to scale to large datasets. We demonstrate this platform by generating H&amp;E-like images from cleared tissues that are fluorescently imaged in 3D with open-top light-sheet (OTLS) microscopy, and quantitatively characterizing the results in comparison to traditional slide-based H&amp;E histology.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33001995</pmid><doi>10.1371/journal.pone.0233198</doi><tpages>e0233198</tpages><orcidid>https://orcid.org/0000-0002-6646-353X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-10, Vol.15 (10), p.e0233198-e0233198
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2447829981
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Absorptivity
Algorithms
Biology and Life Sciences
Clinical pathology
Color
Color imagery
Color processing software
Coloring
Coloring Agents
Computer and Information Sciences
Data processing
Datasets
Digital imaging
Equipment and supplies
Fluorescence
Fluorescence microscopy
Freeware
Histology
Humans
Image processing
Imaging, Three-Dimensional - methods
Leveling
Mechanical engineering
Medicine and Health Sciences
Methods
Microscopy
Microscopy, Fluorescence - methods
Nondestructive testing
Open source software
Pathology
Pathology - methods
Physical Sciences
Research and Analysis Methods
Software
Source code
Staining
Staining and Labeling
Stains & staining
Technology application
title FalseColor-Python: A rapid intensity-leveling and digital-staining package for fluorescence-based slide-free digital pathology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FalseColor-Python:%20A%20rapid%20intensity-leveling%20and%20digital-staining%20package%20for%20fluorescence-based%20slide-free%20digital%20pathology&rft.jtitle=PloS%20one&rft.au=Serafin,%20Robert&rft.date=2020-10-01&rft.volume=15&rft.issue=10&rft.spage=e0233198&rft.epage=e0233198&rft.pages=e0233198-e0233198&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0233198&rft_dat=%3Cgale_plos_%3EA637120909%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447829981&rft_id=info:pmid/33001995&rft_galeid=A637120909&rft_doaj_id=oai_doaj_org_article_074a612252cd4b34b86867486a2a2316&rfr_iscdi=true