Numerical model to predict and compare the hypotensive efficacy and safety of minimally invasive glaucoma surgery devices
To predict and compare the hypotensive efficacy of three minimally-invasive glaucoma surgery (MIGS) implants through a numerical model. Post-implant hypotensive efficacy was evaluated by using a numerical model and a computational fluid dynamics simulation. Three different devices were compared: the...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-09, Vol.15 (9), p.e0239324-e0239324 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0239324 |
---|---|
container_issue | 9 |
container_start_page | e0239324 |
container_title | PloS one |
container_volume | 15 |
creator | Kudsieh, Bachar Fernández-Vigo, Jose Ignacio Agujetas, Rafael Montanero, Jose María Ruiz-Moreno, Jose María Fernández-Vigo, Jose Ángel García-Feijóo, Julián |
description | To predict and compare the hypotensive efficacy of three minimally-invasive glaucoma surgery (MIGS) implants through a numerical model. Post-implant hypotensive efficacy was evaluated by using a numerical model and a computational fluid dynamics simulation. Three different devices were compared: the XEN 45 stent (tube diameter, 45 [mu]m), the XEN 63 stent (63 [mu]m) and the PreserFlo microshunt (70 [mu]m). The influence of the filtration bleb pressure (Bp) and tube diameter, length, and position within the anterior chamber (AC) on intraocular pressure (IOP) were evaluated. Using baseline IOPs of 25, 30 and 50 mmHg, respectively, the corresponding computed post-implant IOPs for each device were as follows: XEN 45: 17 mmHg (29% decrease), 19 mmHg (45%) and 20 mmHg (59%) respectively; XEN 63: 13 mmHg (48%), 13 mmHg (62%), and 13 mmHg (73%); PreserFlo: 12 mmHg (59%), 13 mmHg (73%) and 13 mmHg (73%). At a baseline IOP of 35 mmHg with an increase in the outflow resistance within the Bp from 5 to 17 mmHg, the hypotensive efficacy for each device was reduced as follows: XEN45: 54% to 37%; XEN 63: 74% to 46%; and PreserFlo: 75% to 47%. The length and the position of the tube in the AC had only a minimal (non-significant) effect on IOP ( |
doi_str_mv | 10.1371/journal.pone.0239324 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2447247254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636883596</galeid><doaj_id>oai_doaj_org_article_71ea761032ef4b908cde2bee61bbedef</doaj_id><sourcerecordid>A636883596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-f3ca1f2b8c53e82cbcf05792ebf370b9c2aadfaaa77e38a5f6e2db60b451c1723</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DQQDgujDjE3S64uwLF4GFhe8vYbT9KSTJW3GJB3stzczU2Ur-yAJJCS_8z-X5CTJc5quKS_p21s7ugHMemcHXKeM15xlD5JzGtdVwVL-8M7-LHni_W2a5rwqisfJGWd1TfOqOk-mz2OPTkswpLctGhIs2TlstQwEhpZI2-_AIQlbJNtpZwMOXu-RoFLRSE5HyIPCMBGrSK8H3YMxE9HDHo5kZ2CMKkD86Dp0E2lxryX6p8kjBcbjs3m9SL5_eP_t6tPq-ubj5uryeiWLog4rxSVQxZpK5hwrJhup0rysGTaKl2lTSwbQKgAoS-QV5KpA1jZF2mQ5lbRk_CJ5cdLdGevFXDUvWJaVLM48i8TmRLQWbsXOxQzcJCxocTywrhPggpYGRUkRyoKmnKHKmjqtZIusQSxo02CLKmq9m72NTY-txCE4MAvR5c2gt6Kze1Hm8QmrQ7ivZwFnf47og-i1l2gMDGjHU9x5VmX8EPfLf9D7s5upDmICelA2-pUHUXFZ8KKqeF4XkVrfQ8XRYq9l_GJKx_OFwZuFQWQC_godjN6Lzdcv_8_e_Fiyr-6wWwQTtt6aMWg7-CWYnUDprPcO1d8i01QcOuRPNcShQ8TcIfw3QxAFqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447247254</pqid></control><display><type>article</type><title>Numerical model to predict and compare the hypotensive efficacy and safety of minimally invasive glaucoma surgery devices</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kudsieh, Bachar ; Fernández-Vigo, Jose Ignacio ; Agujetas, Rafael ; Montanero, Jose María ; Ruiz-Moreno, Jose María ; Fernández-Vigo, Jose Ángel ; García-Feijóo, Julián</creator><contributor>Awadein, Ahmed</contributor><creatorcontrib>Kudsieh, Bachar ; Fernández-Vigo, Jose Ignacio ; Agujetas, Rafael ; Montanero, Jose María ; Ruiz-Moreno, Jose María ; Fernández-Vigo, Jose Ángel ; García-Feijóo, Julián ; Awadein, Ahmed</creatorcontrib><description>To predict and compare the hypotensive efficacy of three minimally-invasive glaucoma surgery (MIGS) implants through a numerical model. Post-implant hypotensive efficacy was evaluated by using a numerical model and a computational fluid dynamics simulation. Three different devices were compared: the XEN 45 stent (tube diameter, 45 [mu]m), the XEN 63 stent (63 [mu]m) and the PreserFlo microshunt (70 [mu]m). The influence of the filtration bleb pressure (Bp) and tube diameter, length, and position within the anterior chamber (AC) on intraocular pressure (IOP) were evaluated. Using baseline IOPs of 25, 30 and 50 mmHg, respectively, the corresponding computed post-implant IOPs for each device were as follows: XEN 45: 17 mmHg (29% decrease), 19 mmHg (45%) and 20 mmHg (59%) respectively; XEN 63: 13 mmHg (48%), 13 mmHg (62%), and 13 mmHg (73%); PreserFlo: 12 mmHg (59%), 13 mmHg (73%) and 13 mmHg (73%). At a baseline IOP of 35 mmHg with an increase in the outflow resistance within the Bp from 5 to 17 mmHg, the hypotensive efficacy for each device was reduced as follows: XEN45: 54% to 37%; XEN 63: 74% to 46%; and PreserFlo: 75% to 47%. The length and the position of the tube in the AC had only a minimal (non-significant) effect on IOP (<0.1 mmHg). This hydrodynamic/numerical model showed that implant diameter and bleb pressure are the two most pertinent determinants of hypotensive efficacy. In distinction, tube length and position in the AC do not significantly influence IOP.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0239324</identifier><identifier>PMID: 32991588</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Anterior chamber ; Biology and Life Sciences ; Care and treatment ; Comparative analysis ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Engineering and Technology ; Equipment and supplies ; Eye surgery ; Fluid dynamics ; Glaucoma ; Hospitals ; Hydrodynamics ; Implants ; Intraocular pressure ; Iris ; Mathematical models ; Medical research ; Medicine and Health Sciences ; Minimally invasive surgery ; Numerical methods ; Numerical models ; Numerical prediction ; Ophthalmic equipment ; Permeability ; Physical Sciences ; Pressure ; Simulation ; Software ; Stents ; Surgery ; Surgical implants ; Transplants & implants</subject><ispartof>PloS one, 2020-09, Vol.15 (9), p.e0239324-e0239324</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Kudsieh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Kudsieh et al 2020 Kudsieh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-f3ca1f2b8c53e82cbcf05792ebf370b9c2aadfaaa77e38a5f6e2db60b451c1723</citedby><cites>FETCH-LOGICAL-c669t-f3ca1f2b8c53e82cbcf05792ebf370b9c2aadfaaa77e38a5f6e2db60b451c1723</cites><orcidid>0000-0002-2600-8233 ; 0000-0002-7772-5718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523982/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523982/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids></links><search><contributor>Awadein, Ahmed</contributor><creatorcontrib>Kudsieh, Bachar</creatorcontrib><creatorcontrib>Fernández-Vigo, Jose Ignacio</creatorcontrib><creatorcontrib>Agujetas, Rafael</creatorcontrib><creatorcontrib>Montanero, Jose María</creatorcontrib><creatorcontrib>Ruiz-Moreno, Jose María</creatorcontrib><creatorcontrib>Fernández-Vigo, Jose Ángel</creatorcontrib><creatorcontrib>García-Feijóo, Julián</creatorcontrib><title>Numerical model to predict and compare the hypotensive efficacy and safety of minimally invasive glaucoma surgery devices</title><title>PloS one</title><description>To predict and compare the hypotensive efficacy of three minimally-invasive glaucoma surgery (MIGS) implants through a numerical model. Post-implant hypotensive efficacy was evaluated by using a numerical model and a computational fluid dynamics simulation. Three different devices were compared: the XEN 45 stent (tube diameter, 45 [mu]m), the XEN 63 stent (63 [mu]m) and the PreserFlo microshunt (70 [mu]m). The influence of the filtration bleb pressure (Bp) and tube diameter, length, and position within the anterior chamber (AC) on intraocular pressure (IOP) were evaluated. Using baseline IOPs of 25, 30 and 50 mmHg, respectively, the corresponding computed post-implant IOPs for each device were as follows: XEN 45: 17 mmHg (29% decrease), 19 mmHg (45%) and 20 mmHg (59%) respectively; XEN 63: 13 mmHg (48%), 13 mmHg (62%), and 13 mmHg (73%); PreserFlo: 12 mmHg (59%), 13 mmHg (73%) and 13 mmHg (73%). At a baseline IOP of 35 mmHg with an increase in the outflow resistance within the Bp from 5 to 17 mmHg, the hypotensive efficacy for each device was reduced as follows: XEN45: 54% to 37%; XEN 63: 74% to 46%; and PreserFlo: 75% to 47%. The length and the position of the tube in the AC had only a minimal (non-significant) effect on IOP (<0.1 mmHg). This hydrodynamic/numerical model showed that implant diameter and bleb pressure are the two most pertinent determinants of hypotensive efficacy. In distinction, tube length and position in the AC do not significantly influence IOP.</description><subject>Anterior chamber</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Comparative analysis</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Engineering and Technology</subject><subject>Equipment and supplies</subject><subject>Eye surgery</subject><subject>Fluid dynamics</subject><subject>Glaucoma</subject><subject>Hospitals</subject><subject>Hydrodynamics</subject><subject>Implants</subject><subject>Intraocular pressure</subject><subject>Iris</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Minimally invasive surgery</subject><subject>Numerical methods</subject><subject>Numerical models</subject><subject>Numerical prediction</subject><subject>Ophthalmic equipment</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Pressure</subject><subject>Simulation</subject><subject>Software</subject><subject>Stents</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>Transplants & implants</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DQQDgujDjE3S64uwLF4GFhe8vYbT9KSTJW3GJB3stzczU2Ur-yAJJCS_8z-X5CTJc5quKS_p21s7ugHMemcHXKeM15xlD5JzGtdVwVL-8M7-LHni_W2a5rwqisfJGWd1TfOqOk-mz2OPTkswpLctGhIs2TlstQwEhpZI2-_AIQlbJNtpZwMOXu-RoFLRSE5HyIPCMBGrSK8H3YMxE9HDHo5kZ2CMKkD86Dp0E2lxryX6p8kjBcbjs3m9SL5_eP_t6tPq-ubj5uryeiWLog4rxSVQxZpK5hwrJhup0rysGTaKl2lTSwbQKgAoS-QV5KpA1jZF2mQ5lbRk_CJ5cdLdGevFXDUvWJaVLM48i8TmRLQWbsXOxQzcJCxocTywrhPggpYGRUkRyoKmnKHKmjqtZIusQSxo02CLKmq9m72NTY-txCE4MAvR5c2gt6Kze1Hm8QmrQ7ivZwFnf47og-i1l2gMDGjHU9x5VmX8EPfLf9D7s5upDmICelA2-pUHUXFZ8KKqeF4XkVrfQ8XRYq9l_GJKx_OFwZuFQWQC_godjN6Lzdcv_8_e_Fiyr-6wWwQTtt6aMWg7-CWYnUDprPcO1d8i01QcOuRPNcShQ8TcIfw3QxAFqw</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Kudsieh, Bachar</creator><creator>Fernández-Vigo, Jose Ignacio</creator><creator>Agujetas, Rafael</creator><creator>Montanero, Jose María</creator><creator>Ruiz-Moreno, Jose María</creator><creator>Fernández-Vigo, Jose Ángel</creator><creator>García-Feijóo, Julián</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2600-8233</orcidid><orcidid>https://orcid.org/0000-0002-7772-5718</orcidid></search><sort><creationdate>20200929</creationdate><title>Numerical model to predict and compare the hypotensive efficacy and safety of minimally invasive glaucoma surgery devices</title><author>Kudsieh, Bachar ; Fernández-Vigo, Jose Ignacio ; Agujetas, Rafael ; Montanero, Jose María ; Ruiz-Moreno, Jose María ; Fernández-Vigo, Jose Ángel ; García-Feijóo, Julián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-f3ca1f2b8c53e82cbcf05792ebf370b9c2aadfaaa77e38a5f6e2db60b451c1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anterior chamber</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Comparative analysis</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Engineering and Technology</topic><topic>Equipment and supplies</topic><topic>Eye surgery</topic><topic>Fluid dynamics</topic><topic>Glaucoma</topic><topic>Hospitals</topic><topic>Hydrodynamics</topic><topic>Implants</topic><topic>Intraocular pressure</topic><topic>Iris</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Minimally invasive surgery</topic><topic>Numerical methods</topic><topic>Numerical models</topic><topic>Numerical prediction</topic><topic>Ophthalmic equipment</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Pressure</topic><topic>Simulation</topic><topic>Software</topic><topic>Stents</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudsieh, Bachar</creatorcontrib><creatorcontrib>Fernández-Vigo, Jose Ignacio</creatorcontrib><creatorcontrib>Agujetas, Rafael</creatorcontrib><creatorcontrib>Montanero, Jose María</creatorcontrib><creatorcontrib>Ruiz-Moreno, Jose María</creatorcontrib><creatorcontrib>Fernández-Vigo, Jose Ángel</creatorcontrib><creatorcontrib>García-Feijóo, Julián</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudsieh, Bachar</au><au>Fernández-Vigo, Jose Ignacio</au><au>Agujetas, Rafael</au><au>Montanero, Jose María</au><au>Ruiz-Moreno, Jose María</au><au>Fernández-Vigo, Jose Ángel</au><au>García-Feijóo, Julián</au><au>Awadein, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical model to predict and compare the hypotensive efficacy and safety of minimally invasive glaucoma surgery devices</atitle><jtitle>PloS one</jtitle><date>2020-09-29</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>e0239324</spage><epage>e0239324</epage><pages>e0239324-e0239324</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To predict and compare the hypotensive efficacy of three minimally-invasive glaucoma surgery (MIGS) implants through a numerical model. Post-implant hypotensive efficacy was evaluated by using a numerical model and a computational fluid dynamics simulation. Three different devices were compared: the XEN 45 stent (tube diameter, 45 [mu]m), the XEN 63 stent (63 [mu]m) and the PreserFlo microshunt (70 [mu]m). The influence of the filtration bleb pressure (Bp) and tube diameter, length, and position within the anterior chamber (AC) on intraocular pressure (IOP) were evaluated. Using baseline IOPs of 25, 30 and 50 mmHg, respectively, the corresponding computed post-implant IOPs for each device were as follows: XEN 45: 17 mmHg (29% decrease), 19 mmHg (45%) and 20 mmHg (59%) respectively; XEN 63: 13 mmHg (48%), 13 mmHg (62%), and 13 mmHg (73%); PreserFlo: 12 mmHg (59%), 13 mmHg (73%) and 13 mmHg (73%). At a baseline IOP of 35 mmHg with an increase in the outflow resistance within the Bp from 5 to 17 mmHg, the hypotensive efficacy for each device was reduced as follows: XEN45: 54% to 37%; XEN 63: 74% to 46%; and PreserFlo: 75% to 47%. The length and the position of the tube in the AC had only a minimal (non-significant) effect on IOP (<0.1 mmHg). This hydrodynamic/numerical model showed that implant diameter and bleb pressure are the two most pertinent determinants of hypotensive efficacy. In distinction, tube length and position in the AC do not significantly influence IOP.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32991588</pmid><doi>10.1371/journal.pone.0239324</doi><tpages>e0239324</tpages><orcidid>https://orcid.org/0000-0002-2600-8233</orcidid><orcidid>https://orcid.org/0000-0002-7772-5718</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-09, Vol.15 (9), p.e0239324-e0239324 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2447247254 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Anterior chamber Biology and Life Sciences Care and treatment Comparative analysis Computational fluid dynamics Computer applications Computer simulation Engineering and Technology Equipment and supplies Eye surgery Fluid dynamics Glaucoma Hospitals Hydrodynamics Implants Intraocular pressure Iris Mathematical models Medical research Medicine and Health Sciences Minimally invasive surgery Numerical methods Numerical models Numerical prediction Ophthalmic equipment Permeability Physical Sciences Pressure Simulation Software Stents Surgery Surgical implants Transplants & implants |
title | Numerical model to predict and compare the hypotensive efficacy and safety of minimally invasive glaucoma surgery devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20model%20to%20predict%20and%20compare%20the%20hypotensive%20efficacy%20and%20safety%20of%20minimally%20invasive%20glaucoma%20surgery%20devices&rft.jtitle=PloS%20one&rft.au=Kudsieh,%20Bachar&rft.date=2020-09-29&rft.volume=15&rft.issue=9&rft.spage=e0239324&rft.epage=e0239324&rft.pages=e0239324-e0239324&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0239324&rft_dat=%3Cgale_plos_%3EA636883596%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447247254&rft_id=info:pmid/32991588&rft_galeid=A636883596&rft_doaj_id=oai_doaj_org_article_71ea761032ef4b908cde2bee61bbedef&rfr_iscdi=true |