A physical model inspired density peak clustering

Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clusteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-09, Vol.15 (9), p.e0239406-e0239406
Hauptverfasser: Zhuang, Hui, Cui, Jiancong, Liu, Taoran, Wang, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0239406
container_issue 9
container_start_page e0239406
container_title PloS one
container_volume 15
creator Zhuang, Hui
Cui, Jiancong
Liu, Taoran
Wang, Hong
description Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clustering center has a larger local density and is farther away from the higher density points. However, the density peak clustering algorithm is highly sensitive to density and distance and cannot accurately identify clusters in a dataset having significant differences in cluster structure. In addition, the density peak clustering algorithm's allocation strategy can easily cause attached allocation errors in data point allocation. To solve these problems, this study proposes a potential-field-diffusion-based density peak clustering. As compared to existing clustering algorithms, the advantages of the potential-field-diffusion-based density peak clustering algorithm is three-fold: 1) The potential field concept is introduced in the proposed algorithm, and a density measure based on the potential field's diffusion is proposed. The cluster center can be accurately selected using this measure. 2) The potential-field-diffusion-based density peak clustering algorithm defines the judgment conditions of similar points and adopts different allocation strategies for dissimilar points to avoid attached errors in data point allocation. 3) This study conducted many experiments on synthetic and real-world datasets. Results demonstrate that the proposed potential-field-diffusion-based density peak clustering algorithm achieves excellent clustering effect and is suitable for complex datasets of different sizes, dimensions, and shapes. Besides, the proposed potential-field-diffusion-based density peak clustering algorithm shows particularly excellent performance on variable density and nonconvex datasets.
doi_str_mv 10.1371/journal.pone.0239406
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2445951903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636415873</galeid><doaj_id>oai_doaj_org_article_5365999a2d55489db4e7cc70e839ef2a</doaj_id><sourcerecordid>A636415873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-af75060d0afc79fa8f87d14a7d187016e6522be345e7d64804f748899fa280cf3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6DwQLgujFjEnzfSMMix8DCwt-3YZMetrJmGm6SSvOvzezU2Ure2ECSTh5zntywlsUzzFaYiLw210YY2f8sg8dLFFFFEX8QXGOFakWvELk4Z3zWfEkpR1CjEjOHxdnpFICiUqcF3hV9ttDctb4ch9q8KXrUu8i1GUNXXLDoezB_CitH9MA0XXt0-JRY3yCZ9N-UXz78P7r5afF1fXH9eXqamE5V8PCNIIhjmpkGitUY2QjRY2pyYsUCHPgrKo2QCgDUXMqEW0ElVJltJLINuSieHHS7X1Ieuo26YpSphhWiGRifSLqYHa6j25v4kEH4_RtIMRWmzg460EzwplSylQ1Y1SqekNBWCsQSKKgqUzWejdVGzd7qC10QzR-Jjq_6dxWt-GnFgxTJEUWeD0JxHAzQhr03iUL3psOwnj7bp4HxjKjL_9B7-9uolqTG3BdE3JdexTVK044xSxXzdTyHirPGvbOZms0LsdnCW9mCZkZ4NfQmjElvf7y-f_Z6-9z9tUddgvGD9sU_Di40KU5SE-gjSGlCM3fT8ZIH5395zf00dl6cjb5DaRj53A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445951903</pqid></control><display><type>article</type><title>A physical model inspired density peak clustering</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhuang, Hui ; Cui, Jiancong ; Liu, Taoran ; Wang, Hong</creator><contributor>Mirjalili, Seyedali</contributor><creatorcontrib>Zhuang, Hui ; Cui, Jiancong ; Liu, Taoran ; Wang, Hong ; Mirjalili, Seyedali</creatorcontrib><description>Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clustering center has a larger local density and is farther away from the higher density points. However, the density peak clustering algorithm is highly sensitive to density and distance and cannot accurately identify clusters in a dataset having significant differences in cluster structure. In addition, the density peak clustering algorithm's allocation strategy can easily cause attached allocation errors in data point allocation. To solve these problems, this study proposes a potential-field-diffusion-based density peak clustering. As compared to existing clustering algorithms, the advantages of the potential-field-diffusion-based density peak clustering algorithm is three-fold: 1) The potential field concept is introduced in the proposed algorithm, and a density measure based on the potential field's diffusion is proposed. The cluster center can be accurately selected using this measure. 2) The potential-field-diffusion-based density peak clustering algorithm defines the judgment conditions of similar points and adopts different allocation strategies for dissimilar points to avoid attached errors in data point allocation. 3) This study conducted many experiments on synthetic and real-world datasets. Results demonstrate that the proposed potential-field-diffusion-based density peak clustering algorithm achieves excellent clustering effect and is suitable for complex datasets of different sizes, dimensions, and shapes. Besides, the proposed potential-field-diffusion-based density peak clustering algorithm shows particularly excellent performance on variable density and nonconvex datasets.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0239406</identifier><identifier>PMID: 32970727</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Computer and Information Sciences ; Data mining ; Data points ; Data processing ; Datasets ; Density ; Diffusion ; Engineering ; Engineering and Technology ; Experiments ; Information science ; Medicine and Health Sciences ; Methods ; Network analysis ; Physical Sciences ; Potential fields ; Research and Analysis Methods ; Social networks ; Social organization ; Social Sciences</subject><ispartof>PloS one, 2020-09, Vol.15 (9), p.e0239406-e0239406</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Zhuang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Zhuang et al 2020 Zhuang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-af75060d0afc79fa8f87d14a7d187016e6522be345e7d64804f748899fa280cf3</citedby><cites>FETCH-LOGICAL-c669t-af75060d0afc79fa8f87d14a7d187016e6522be345e7d64804f748899fa280cf3</cites><orcidid>0000-0001-5727-7834 ; 0000-0003-1444-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514087/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514087/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Mirjalili, Seyedali</contributor><creatorcontrib>Zhuang, Hui</creatorcontrib><creatorcontrib>Cui, Jiancong</creatorcontrib><creatorcontrib>Liu, Taoran</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><title>A physical model inspired density peak clustering</title><title>PloS one</title><description>Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clustering center has a larger local density and is farther away from the higher density points. However, the density peak clustering algorithm is highly sensitive to density and distance and cannot accurately identify clusters in a dataset having significant differences in cluster structure. In addition, the density peak clustering algorithm's allocation strategy can easily cause attached allocation errors in data point allocation. To solve these problems, this study proposes a potential-field-diffusion-based density peak clustering. As compared to existing clustering algorithms, the advantages of the potential-field-diffusion-based density peak clustering algorithm is three-fold: 1) The potential field concept is introduced in the proposed algorithm, and a density measure based on the potential field's diffusion is proposed. The cluster center can be accurately selected using this measure. 2) The potential-field-diffusion-based density peak clustering algorithm defines the judgment conditions of similar points and adopts different allocation strategies for dissimilar points to avoid attached errors in data point allocation. 3) This study conducted many experiments on synthetic and real-world datasets. Results demonstrate that the proposed potential-field-diffusion-based density peak clustering algorithm achieves excellent clustering effect and is suitable for complex datasets of different sizes, dimensions, and shapes. Besides, the proposed potential-field-diffusion-based density peak clustering algorithm shows particularly excellent performance on variable density and nonconvex datasets.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer and Information Sciences</subject><subject>Data mining</subject><subject>Data points</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Density</subject><subject>Diffusion</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Experiments</subject><subject>Information science</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Network analysis</subject><subject>Physical Sciences</subject><subject>Potential fields</subject><subject>Research and Analysis Methods</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6DwQLgujFjEnzfSMMix8DCwt-3YZMetrJmGm6SSvOvzezU2Ure2ECSTh5zntywlsUzzFaYiLw210YY2f8sg8dLFFFFEX8QXGOFakWvELk4Z3zWfEkpR1CjEjOHxdnpFICiUqcF3hV9ttDctb4ch9q8KXrUu8i1GUNXXLDoezB_CitH9MA0XXt0-JRY3yCZ9N-UXz78P7r5afF1fXH9eXqamE5V8PCNIIhjmpkGitUY2QjRY2pyYsUCHPgrKo2QCgDUXMqEW0ElVJltJLINuSieHHS7X1Ieuo26YpSphhWiGRifSLqYHa6j25v4kEH4_RtIMRWmzg460EzwplSylQ1Y1SqekNBWCsQSKKgqUzWejdVGzd7qC10QzR-Jjq_6dxWt-GnFgxTJEUWeD0JxHAzQhr03iUL3psOwnj7bp4HxjKjL_9B7-9uolqTG3BdE3JdexTVK044xSxXzdTyHirPGvbOZms0LsdnCW9mCZkZ4NfQmjElvf7y-f_Z6-9z9tUddgvGD9sU_Di40KU5SE-gjSGlCM3fT8ZIH5395zf00dl6cjb5DaRj53A</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>Zhuang, Hui</creator><creator>Cui, Jiancong</creator><creator>Liu, Taoran</creator><creator>Wang, Hong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5727-7834</orcidid><orcidid>https://orcid.org/0000-0003-1444-2056</orcidid></search><sort><creationdate>20200924</creationdate><title>A physical model inspired density peak clustering</title><author>Zhuang, Hui ; Cui, Jiancong ; Liu, Taoran ; Wang, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-af75060d0afc79fa8f87d14a7d187016e6522be345e7d64804f748899fa280cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer and Information Sciences</topic><topic>Data mining</topic><topic>Data points</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Density</topic><topic>Diffusion</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Experiments</topic><topic>Information science</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Network analysis</topic><topic>Physical Sciences</topic><topic>Potential fields</topic><topic>Research and Analysis Methods</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Hui</creatorcontrib><creatorcontrib>Cui, Jiancong</creatorcontrib><creatorcontrib>Liu, Taoran</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Hui</au><au>Cui, Jiancong</au><au>Liu, Taoran</au><au>Wang, Hong</au><au>Mirjalili, Seyedali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physical model inspired density peak clustering</atitle><jtitle>PloS one</jtitle><date>2020-09-24</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>e0239406</spage><epage>e0239406</epage><pages>e0239406-e0239406</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clustering center has a larger local density and is farther away from the higher density points. However, the density peak clustering algorithm is highly sensitive to density and distance and cannot accurately identify clusters in a dataset having significant differences in cluster structure. In addition, the density peak clustering algorithm's allocation strategy can easily cause attached allocation errors in data point allocation. To solve these problems, this study proposes a potential-field-diffusion-based density peak clustering. As compared to existing clustering algorithms, the advantages of the potential-field-diffusion-based density peak clustering algorithm is three-fold: 1) The potential field concept is introduced in the proposed algorithm, and a density measure based on the potential field's diffusion is proposed. The cluster center can be accurately selected using this measure. 2) The potential-field-diffusion-based density peak clustering algorithm defines the judgment conditions of similar points and adopts different allocation strategies for dissimilar points to avoid attached errors in data point allocation. 3) This study conducted many experiments on synthetic and real-world datasets. Results demonstrate that the proposed potential-field-diffusion-based density peak clustering algorithm achieves excellent clustering effect and is suitable for complex datasets of different sizes, dimensions, and shapes. Besides, the proposed potential-field-diffusion-based density peak clustering algorithm shows particularly excellent performance on variable density and nonconvex datasets.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32970727</pmid><doi>10.1371/journal.pone.0239406</doi><tpages>e0239406</tpages><orcidid>https://orcid.org/0000-0001-5727-7834</orcidid><orcidid>https://orcid.org/0000-0003-1444-2056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-09, Vol.15 (9), p.e0239406-e0239406
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2445951903
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Cluster analysis
Clustering
Computer and Information Sciences
Data mining
Data points
Data processing
Datasets
Density
Diffusion
Engineering
Engineering and Technology
Experiments
Information science
Medicine and Health Sciences
Methods
Network analysis
Physical Sciences
Potential fields
Research and Analysis Methods
Social networks
Social organization
Social Sciences
title A physical model inspired density peak clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physical%20model%20inspired%20density%20peak%20clustering&rft.jtitle=PloS%20one&rft.au=Zhuang,%20Hui&rft.date=2020-09-24&rft.volume=15&rft.issue=9&rft.spage=e0239406&rft.epage=e0239406&rft.pages=e0239406-e0239406&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0239406&rft_dat=%3Cgale_plos_%3EA636415873%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445951903&rft_id=info:pmid/32970727&rft_galeid=A636415873&rft_doaj_id=oai_doaj_org_article_5365999a2d55489db4e7cc70e839ef2a&rfr_iscdi=true