A physical model inspired density peak clustering
Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clusteri...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-09, Vol.15 (9), p.e0239406-e0239406 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0239406 |
---|---|
container_issue | 9 |
container_start_page | e0239406 |
container_title | PloS one |
container_volume | 15 |
creator | Zhuang, Hui Cui, Jiancong Liu, Taoran Wang, Hong |
description | Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clustering center has a larger local density and is farther away from the higher density points. However, the density peak clustering algorithm is highly sensitive to density and distance and cannot accurately identify clusters in a dataset having significant differences in cluster structure. In addition, the density peak clustering algorithm's allocation strategy can easily cause attached allocation errors in data point allocation. To solve these problems, this study proposes a potential-field-diffusion-based density peak clustering. As compared to existing clustering algorithms, the advantages of the potential-field-diffusion-based density peak clustering algorithm is three-fold: 1) The potential field concept is introduced in the proposed algorithm, and a density measure based on the potential field's diffusion is proposed. The cluster center can be accurately selected using this measure. 2) The potential-field-diffusion-based density peak clustering algorithm defines the judgment conditions of similar points and adopts different allocation strategies for dissimilar points to avoid attached errors in data point allocation. 3) This study conducted many experiments on synthetic and real-world datasets. Results demonstrate that the proposed potential-field-diffusion-based density peak clustering algorithm achieves excellent clustering effect and is suitable for complex datasets of different sizes, dimensions, and shapes. Besides, the proposed potential-field-diffusion-based density peak clustering algorithm shows particularly excellent performance on variable density and nonconvex datasets. |
doi_str_mv | 10.1371/journal.pone.0239406 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2445951903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636415873</galeid><doaj_id>oai_doaj_org_article_5365999a2d55489db4e7cc70e839ef2a</doaj_id><sourcerecordid>A636415873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-af75060d0afc79fa8f87d14a7d187016e6522be345e7d64804f748899fa280cf3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6DwQLgujFjEnzfSMMix8DCwt-3YZMetrJmGm6SSvOvzezU2Ure2ECSTh5zntywlsUzzFaYiLw210YY2f8sg8dLFFFFEX8QXGOFakWvELk4Z3zWfEkpR1CjEjOHxdnpFICiUqcF3hV9ttDctb4ch9q8KXrUu8i1GUNXXLDoezB_CitH9MA0XXt0-JRY3yCZ9N-UXz78P7r5afF1fXH9eXqamE5V8PCNIIhjmpkGitUY2QjRY2pyYsUCHPgrKo2QCgDUXMqEW0ElVJltJLINuSieHHS7X1Ieuo26YpSphhWiGRifSLqYHa6j25v4kEH4_RtIMRWmzg460EzwplSylQ1Y1SqekNBWCsQSKKgqUzWejdVGzd7qC10QzR-Jjq_6dxWt-GnFgxTJEUWeD0JxHAzQhr03iUL3psOwnj7bp4HxjKjL_9B7-9uolqTG3BdE3JdexTVK044xSxXzdTyHirPGvbOZms0LsdnCW9mCZkZ4NfQmjElvf7y-f_Z6-9z9tUddgvGD9sU_Di40KU5SE-gjSGlCM3fT8ZIH5395zf00dl6cjb5DaRj53A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445951903</pqid></control><display><type>article</type><title>A physical model inspired density peak clustering</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhuang, Hui ; Cui, Jiancong ; Liu, Taoran ; Wang, Hong</creator><contributor>Mirjalili, Seyedali</contributor><creatorcontrib>Zhuang, Hui ; Cui, Jiancong ; Liu, Taoran ; Wang, Hong ; Mirjalili, Seyedali</creatorcontrib><description>Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clustering center has a larger local density and is farther away from the higher density points. However, the density peak clustering algorithm is highly sensitive to density and distance and cannot accurately identify clusters in a dataset having significant differences in cluster structure. In addition, the density peak clustering algorithm's allocation strategy can easily cause attached allocation errors in data point allocation. To solve these problems, this study proposes a potential-field-diffusion-based density peak clustering. As compared to existing clustering algorithms, the advantages of the potential-field-diffusion-based density peak clustering algorithm is three-fold: 1) The potential field concept is introduced in the proposed algorithm, and a density measure based on the potential field's diffusion is proposed. The cluster center can be accurately selected using this measure. 2) The potential-field-diffusion-based density peak clustering algorithm defines the judgment conditions of similar points and adopts different allocation strategies for dissimilar points to avoid attached errors in data point allocation. 3) This study conducted many experiments on synthetic and real-world datasets. Results demonstrate that the proposed potential-field-diffusion-based density peak clustering algorithm achieves excellent clustering effect and is suitable for complex datasets of different sizes, dimensions, and shapes. Besides, the proposed potential-field-diffusion-based density peak clustering algorithm shows particularly excellent performance on variable density and nonconvex datasets.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0239406</identifier><identifier>PMID: 32970727</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Computer and Information Sciences ; Data mining ; Data points ; Data processing ; Datasets ; Density ; Diffusion ; Engineering ; Engineering and Technology ; Experiments ; Information science ; Medicine and Health Sciences ; Methods ; Network analysis ; Physical Sciences ; Potential fields ; Research and Analysis Methods ; Social networks ; Social organization ; Social Sciences</subject><ispartof>PloS one, 2020-09, Vol.15 (9), p.e0239406-e0239406</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Zhuang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Zhuang et al 2020 Zhuang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-af75060d0afc79fa8f87d14a7d187016e6522be345e7d64804f748899fa280cf3</citedby><cites>FETCH-LOGICAL-c669t-af75060d0afc79fa8f87d14a7d187016e6522be345e7d64804f748899fa280cf3</cites><orcidid>0000-0001-5727-7834 ; 0000-0003-1444-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514087/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514087/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Mirjalili, Seyedali</contributor><creatorcontrib>Zhuang, Hui</creatorcontrib><creatorcontrib>Cui, Jiancong</creatorcontrib><creatorcontrib>Liu, Taoran</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><title>A physical model inspired density peak clustering</title><title>PloS one</title><description>Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clustering center has a larger local density and is farther away from the higher density points. However, the density peak clustering algorithm is highly sensitive to density and distance and cannot accurately identify clusters in a dataset having significant differences in cluster structure. In addition, the density peak clustering algorithm's allocation strategy can easily cause attached allocation errors in data point allocation. To solve these problems, this study proposes a potential-field-diffusion-based density peak clustering. As compared to existing clustering algorithms, the advantages of the potential-field-diffusion-based density peak clustering algorithm is three-fold: 1) The potential field concept is introduced in the proposed algorithm, and a density measure based on the potential field's diffusion is proposed. The cluster center can be accurately selected using this measure. 2) The potential-field-diffusion-based density peak clustering algorithm defines the judgment conditions of similar points and adopts different allocation strategies for dissimilar points to avoid attached errors in data point allocation. 3) This study conducted many experiments on synthetic and real-world datasets. Results demonstrate that the proposed potential-field-diffusion-based density peak clustering algorithm achieves excellent clustering effect and is suitable for complex datasets of different sizes, dimensions, and shapes. Besides, the proposed potential-field-diffusion-based density peak clustering algorithm shows particularly excellent performance on variable density and nonconvex datasets.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer and Information Sciences</subject><subject>Data mining</subject><subject>Data points</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Density</subject><subject>Diffusion</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Experiments</subject><subject>Information science</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Network analysis</subject><subject>Physical Sciences</subject><subject>Potential fields</subject><subject>Research and Analysis Methods</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6DwQLgujFjEnzfSMMix8DCwt-3YZMetrJmGm6SSvOvzezU2Ure2ECSTh5zntywlsUzzFaYiLw210YY2f8sg8dLFFFFEX8QXGOFakWvELk4Z3zWfEkpR1CjEjOHxdnpFICiUqcF3hV9ttDctb4ch9q8KXrUu8i1GUNXXLDoezB_CitH9MA0XXt0-JRY3yCZ9N-UXz78P7r5afF1fXH9eXqamE5V8PCNIIhjmpkGitUY2QjRY2pyYsUCHPgrKo2QCgDUXMqEW0ElVJltJLINuSieHHS7X1Ieuo26YpSphhWiGRifSLqYHa6j25v4kEH4_RtIMRWmzg460EzwplSylQ1Y1SqekNBWCsQSKKgqUzWejdVGzd7qC10QzR-Jjq_6dxWt-GnFgxTJEUWeD0JxHAzQhr03iUL3psOwnj7bp4HxjKjL_9B7-9uolqTG3BdE3JdexTVK044xSxXzdTyHirPGvbOZms0LsdnCW9mCZkZ4NfQmjElvf7y-f_Z6-9z9tUddgvGD9sU_Di40KU5SE-gjSGlCM3fT8ZIH5395zf00dl6cjb5DaRj53A</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>Zhuang, Hui</creator><creator>Cui, Jiancong</creator><creator>Liu, Taoran</creator><creator>Wang, Hong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5727-7834</orcidid><orcidid>https://orcid.org/0000-0003-1444-2056</orcidid></search><sort><creationdate>20200924</creationdate><title>A physical model inspired density peak clustering</title><author>Zhuang, Hui ; Cui, Jiancong ; Liu, Taoran ; Wang, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-af75060d0afc79fa8f87d14a7d187016e6522be345e7d64804f748899fa280cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer and Information Sciences</topic><topic>Data mining</topic><topic>Data points</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Density</topic><topic>Diffusion</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Experiments</topic><topic>Information science</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Network analysis</topic><topic>Physical Sciences</topic><topic>Potential fields</topic><topic>Research and Analysis Methods</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Hui</creatorcontrib><creatorcontrib>Cui, Jiancong</creatorcontrib><creatorcontrib>Liu, Taoran</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Hui</au><au>Cui, Jiancong</au><au>Liu, Taoran</au><au>Wang, Hong</au><au>Mirjalili, Seyedali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physical model inspired density peak clustering</atitle><jtitle>PloS one</jtitle><date>2020-09-24</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>e0239406</spage><epage>e0239406</epage><pages>e0239406-e0239406</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Clustering is an important technology of data mining, which plays a vital role in bioscience, social network and network analysis. As a clustering algorithm based on density and distance, density peak clustering is extensively used to solve practical problems. The algorithm assumes that the clustering center has a larger local density and is farther away from the higher density points. However, the density peak clustering algorithm is highly sensitive to density and distance and cannot accurately identify clusters in a dataset having significant differences in cluster structure. In addition, the density peak clustering algorithm's allocation strategy can easily cause attached allocation errors in data point allocation. To solve these problems, this study proposes a potential-field-diffusion-based density peak clustering. As compared to existing clustering algorithms, the advantages of the potential-field-diffusion-based density peak clustering algorithm is three-fold: 1) The potential field concept is introduced in the proposed algorithm, and a density measure based on the potential field's diffusion is proposed. The cluster center can be accurately selected using this measure. 2) The potential-field-diffusion-based density peak clustering algorithm defines the judgment conditions of similar points and adopts different allocation strategies for dissimilar points to avoid attached errors in data point allocation. 3) This study conducted many experiments on synthetic and real-world datasets. Results demonstrate that the proposed potential-field-diffusion-based density peak clustering algorithm achieves excellent clustering effect and is suitable for complex datasets of different sizes, dimensions, and shapes. Besides, the proposed potential-field-diffusion-based density peak clustering algorithm shows particularly excellent performance on variable density and nonconvex datasets.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32970727</pmid><doi>10.1371/journal.pone.0239406</doi><tpages>e0239406</tpages><orcidid>https://orcid.org/0000-0001-5727-7834</orcidid><orcidid>https://orcid.org/0000-0003-1444-2056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-09, Vol.15 (9), p.e0239406-e0239406 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2445951903 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Cluster analysis Clustering Computer and Information Sciences Data mining Data points Data processing Datasets Density Diffusion Engineering Engineering and Technology Experiments Information science Medicine and Health Sciences Methods Network analysis Physical Sciences Potential fields Research and Analysis Methods Social networks Social organization Social Sciences |
title | A physical model inspired density peak clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physical%20model%20inspired%20density%20peak%20clustering&rft.jtitle=PloS%20one&rft.au=Zhuang,%20Hui&rft.date=2020-09-24&rft.volume=15&rft.issue=9&rft.spage=e0239406&rft.epage=e0239406&rft.pages=e0239406-e0239406&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0239406&rft_dat=%3Cgale_plos_%3EA636415873%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445951903&rft_id=info:pmid/32970727&rft_galeid=A636415873&rft_doaj_id=oai_doaj_org_article_5365999a2d55489db4e7cc70e839ef2a&rfr_iscdi=true |