THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis
Apoptosis of cochlear hair cells is a key step towards age-related hearing loss. Although numerous genes have been implicated in the genetic causes of late-onset, progressive hearing loss, few show direct links to the proapoptotic process. By genome-wide linkage analysis and whole exome sequencing,...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2020-08, Vol.16 (8), p.e1008953 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e1008953 |
container_title | PLoS genetics |
container_volume | 16 |
creator | Zhang, Luping Gao, Yu Zhang, Ru Sun, Feifei Cheng, Cheng Qian, Fuping Duan, Xuchu Wei, Guanyun Sun, Cheng Pang, Xiuhong Chen, Penghui Chai, Renjie Yang, Tao Wu, Hao Liu, Dong |
description | Apoptosis of cochlear hair cells is a key step towards age-related hearing loss. Although numerous genes have been implicated in the genetic causes of late-onset, progressive hearing loss, few show direct links to the proapoptotic process. By genome-wide linkage analysis and whole exome sequencing, we identified a heterozygous p.L183V variant in THOC1 as the probable cause of the late-onset, progressive, non-syndromic hearing loss in a large family with autosomal dominant inheritance. Thoc1, a member of the conserved multisubunit THO/TREX ribonucleoprotein complex, is highly expressed in mouse and zebrafish hair cells. The thoc1 knockout (thoc1 mutant) zebrafish generated by gRNA-Cas9 system lacks the C-startle response, indicative of the hearing dysfunction. Both Thoc1 mutant and knockdown zebrafish have greatly reduced hair cell numbers, while the latter can be rescued by embryonic microinjection of human wild-type THOC1 mRNA but to significantly lesser degree by the c.547C>G mutant mRNA. The Thoc1 deficiency resulted in marked apoptosis in zebrafish hair cells. Consistently, transcriptome sequencing of the mutants showed significantly increased gene expression in the p53-associated signaling pathway. Depletion of p53 or applying the p53 inhibitor Pifithrin-α significantly rescued the hair cell loss in the Thoc1 knockdown zebrafish. Our results suggested that THOC1 deficiency lead to late-onset, progressive hearing loss through p53-mediated hair cell apoptosis. This is to our knowledge the first human disease associated with THOC1 mutations and may shed light on the molecular mechanism underlying the age-related hearing loss. |
doi_str_mv | 10.1371/journal.pgen.1008953 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443611473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634469264</galeid><doaj_id>oai_doaj_org_article_a3f775b583ca400bb8a1a52d76c5126e</doaj_id><sourcerecordid>A634469264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6923-fe410b52e6ff1366de5cd846b958a961a067f8acbe8846c8a7e822fadc1f8b1e3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6D0QLguDFjE3z1d4Iy6DuwOKArt6G0zRtM2SSmrTi_HszTneZgoKSi4TT57zn9HwkyXOUrRDm6O3Ojd6CWfWtsiuUZUVJ8YPkElGKl5xk5OHZ-yJ5EsIuyzAtSv44ucA556wk5DJpb6-3a5TWqtFSKysPqVFQh3RwqYFBLZ0NakhtvA629m6vZdop8Nq2qXEhcp13Y9ulfYy0V7WOPnXagfapVMak0Lt-cEGHp8mjBkxQz6Z7kXz98P52fb282X7crK9ulpKVOV42iqCsorliTYMwY7Wisi4Iq0paQMkQZIw3BchKFdEqC-CqyPMGaomaokIKL5KXJ90-piemGgWRE4IZQoTjSGxORO1gJ3qv9-APwoEWvw3OtwL8oKVRAnDDOa1ogSWQLKuqAhDQvOZMUpSzY7R3U7Sxin8vlR08mJno_IvVnWjdD8EJITTmtEheTQLefR9VGP6S8kS1ELPStnFRTO51kOKKYUJi6dhRa_UHKp5axbY5G1sc7TOHNzOHyAzq59DCGILYfPn8H-ynf2e33-bs6zM2jpYZuuDMOOg4cnOQnEDp49x51dxXGWXiuBB3lRPHhRDTQkS3F-cdune62wD8C7BvBbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443611473</pqid></control><display><type>article</type><title>THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Zhang, Luping ; Gao, Yu ; Zhang, Ru ; Sun, Feifei ; Cheng, Cheng ; Qian, Fuping ; Duan, Xuchu ; Wei, Guanyun ; Sun, Cheng ; Pang, Xiuhong ; Chen, Penghui ; Chai, Renjie ; Yang, Tao ; Wu, Hao ; Liu, Dong</creator><creatorcontrib>Zhang, Luping ; Gao, Yu ; Zhang, Ru ; Sun, Feifei ; Cheng, Cheng ; Qian, Fuping ; Duan, Xuchu ; Wei, Guanyun ; Sun, Cheng ; Pang, Xiuhong ; Chen, Penghui ; Chai, Renjie ; Yang, Tao ; Wu, Hao ; Liu, Dong</creatorcontrib><description>Apoptosis of cochlear hair cells is a key step towards age-related hearing loss. Although numerous genes have been implicated in the genetic causes of late-onset, progressive hearing loss, few show direct links to the proapoptotic process. By genome-wide linkage analysis and whole exome sequencing, we identified a heterozygous p.L183V variant in THOC1 as the probable cause of the late-onset, progressive, non-syndromic hearing loss in a large family with autosomal dominant inheritance. Thoc1, a member of the conserved multisubunit THO/TREX ribonucleoprotein complex, is highly expressed in mouse and zebrafish hair cells. The thoc1 knockout (thoc1 mutant) zebrafish generated by gRNA-Cas9 system lacks the C-startle response, indicative of the hearing dysfunction. Both Thoc1 mutant and knockdown zebrafish have greatly reduced hair cell numbers, while the latter can be rescued by embryonic microinjection of human wild-type THOC1 mRNA but to significantly lesser degree by the c.547C>G mutant mRNA. The Thoc1 deficiency resulted in marked apoptosis in zebrafish hair cells. Consistently, transcriptome sequencing of the mutants showed significantly increased gene expression in the p53-associated signaling pathway. Depletion of p53 or applying the p53 inhibitor Pifithrin-α significantly rescued the hair cell loss in the Thoc1 knockdown zebrafish. Our results suggested that THOC1 deficiency lead to late-onset, progressive hearing loss through p53-mediated hair cell apoptosis. This is to our knowledge the first human disease associated with THOC1 mutations and may shed light on the molecular mechanism underlying the age-related hearing loss.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008953</identifier><identifier>PMID: 32776944</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Animals ; Apoptosis ; Apoptosis - genetics ; Autosomal dominant inheritance ; Benzothiazoles - pharmacology ; Biology and Life Sciences ; Chromosomes ; Cochlea ; CRISPR-Associated Protein 9 - genetics ; Danio rerio ; Deafness - genetics ; Deafness - pathology ; Disease ; Disease Models, Animal ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; Education ; Embryos ; Exome Sequencing ; Gene expression ; Gene Expression Regulation - drug effects ; Gene Knockout Techniques ; Genomes ; gRNA ; Hair ; Hair cells ; Hair Cells, Auditory - metabolism ; Hair Cells, Auditory - pathology ; Hair Cells, Auditory, Inner - metabolism ; Hair Cells, Auditory, Inner - pathology ; Health aspects ; Hearing loss ; Heredity ; Hospitals ; Humans ; Laboratories ; Life sciences ; Linkage analysis ; Medicine ; Medicine and Health Sciences ; Mice ; Microinjection ; Mutants ; Mutation ; Otolaryngology ; p53 Protein ; Physiological aspects ; Research and Analysis Methods ; RNA, Guide, CRISPR-Cas Systems ; RNA-Binding Proteins - genetics ; Signal transduction ; Signal Transduction - drug effects ; Startle response ; Stem cells ; Supervision ; Surgery ; Toluene - analogs & derivatives ; Toluene - pharmacology ; Tumor Suppressor Protein p53 - antagonists & inhibitors ; Tumor Suppressor Protein p53 - genetics ; Zebrafish - genetics</subject><ispartof>PLoS genetics, 2020-08, Vol.16 (8), p.e1008953</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Zhang et al 2020 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6923-fe410b52e6ff1366de5cd846b958a961a067f8acbe8846c8a7e822fadc1f8b1e3</citedby><cites>FETCH-LOGICAL-c6923-fe410b52e6ff1366de5cd846b958a961a067f8acbe8846c8a7e822fadc1f8b1e3</cites><orcidid>0000-0003-1745-081X ; 0000-0002-1296-5163 ; 0000-0001-8411-4619 ; 0000-0002-4763-126X ; 0000-0002-2764-6544 ; 0000-0001-6011-987X ; 0000-0002-7356-5841 ; 0000-0003-2986-8623 ; 0000-0001-5745-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32776944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Luping</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Zhang, Ru</creatorcontrib><creatorcontrib>Sun, Feifei</creatorcontrib><creatorcontrib>Cheng, Cheng</creatorcontrib><creatorcontrib>Qian, Fuping</creatorcontrib><creatorcontrib>Duan, Xuchu</creatorcontrib><creatorcontrib>Wei, Guanyun</creatorcontrib><creatorcontrib>Sun, Cheng</creatorcontrib><creatorcontrib>Pang, Xiuhong</creatorcontrib><creatorcontrib>Chen, Penghui</creatorcontrib><creatorcontrib>Chai, Renjie</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><title>THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Apoptosis of cochlear hair cells is a key step towards age-related hearing loss. Although numerous genes have been implicated in the genetic causes of late-onset, progressive hearing loss, few show direct links to the proapoptotic process. By genome-wide linkage analysis and whole exome sequencing, we identified a heterozygous p.L183V variant in THOC1 as the probable cause of the late-onset, progressive, non-syndromic hearing loss in a large family with autosomal dominant inheritance. Thoc1, a member of the conserved multisubunit THO/TREX ribonucleoprotein complex, is highly expressed in mouse and zebrafish hair cells. The thoc1 knockout (thoc1 mutant) zebrafish generated by gRNA-Cas9 system lacks the C-startle response, indicative of the hearing dysfunction. Both Thoc1 mutant and knockdown zebrafish have greatly reduced hair cell numbers, while the latter can be rescued by embryonic microinjection of human wild-type THOC1 mRNA but to significantly lesser degree by the c.547C>G mutant mRNA. The Thoc1 deficiency resulted in marked apoptosis in zebrafish hair cells. Consistently, transcriptome sequencing of the mutants showed significantly increased gene expression in the p53-associated signaling pathway. Depletion of p53 or applying the p53 inhibitor Pifithrin-α significantly rescued the hair cell loss in the Thoc1 knockdown zebrafish. Our results suggested that THOC1 deficiency lead to late-onset, progressive hearing loss through p53-mediated hair cell apoptosis. This is to our knowledge the first human disease associated with THOC1 mutations and may shed light on the molecular mechanism underlying the age-related hearing loss.</description><subject>Age</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Autosomal dominant inheritance</subject><subject>Benzothiazoles - pharmacology</subject><subject>Biology and Life Sciences</subject><subject>Chromosomes</subject><subject>Cochlea</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>Danio rerio</subject><subject>Deafness - genetics</subject><subject>Deafness - pathology</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Education</subject><subject>Embryos</subject><subject>Exome Sequencing</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Knockout Techniques</subject><subject>Genomes</subject><subject>gRNA</subject><subject>Hair</subject><subject>Hair cells</subject><subject>Hair Cells, Auditory - metabolism</subject><subject>Hair Cells, Auditory - pathology</subject><subject>Hair Cells, Auditory, Inner - metabolism</subject><subject>Hair Cells, Auditory, Inner - pathology</subject><subject>Health aspects</subject><subject>Hearing loss</subject><subject>Heredity</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Life sciences</subject><subject>Linkage analysis</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Microinjection</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Otolaryngology</subject><subject>p53 Protein</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>RNA, Guide, CRISPR-Cas Systems</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Startle response</subject><subject>Stem cells</subject><subject>Supervision</subject><subject>Surgery</subject><subject>Toluene - analogs & derivatives</subject><subject>Toluene - pharmacology</subject><subject>Tumor Suppressor Protein p53 - antagonists & inhibitors</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Zebrafish - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6D0QLguDFjE3z1d4Iy6DuwOKArt6G0zRtM2SSmrTi_HszTneZgoKSi4TT57zn9HwkyXOUrRDm6O3Ojd6CWfWtsiuUZUVJ8YPkElGKl5xk5OHZ-yJ5EsIuyzAtSv44ucA556wk5DJpb6-3a5TWqtFSKysPqVFQh3RwqYFBLZ0NakhtvA629m6vZdop8Nq2qXEhcp13Y9ulfYy0V7WOPnXagfapVMak0Lt-cEGHp8mjBkxQz6Z7kXz98P52fb282X7crK9ulpKVOV42iqCsorliTYMwY7Wisi4Iq0paQMkQZIw3BchKFdEqC-CqyPMGaomaokIKL5KXJ90-piemGgWRE4IZQoTjSGxORO1gJ3qv9-APwoEWvw3OtwL8oKVRAnDDOa1ogSWQLKuqAhDQvOZMUpSzY7R3U7Sxin8vlR08mJno_IvVnWjdD8EJITTmtEheTQLefR9VGP6S8kS1ELPStnFRTO51kOKKYUJi6dhRa_UHKp5axbY5G1sc7TOHNzOHyAzq59DCGILYfPn8H-ynf2e33-bs6zM2jpYZuuDMOOg4cnOQnEDp49x51dxXGWXiuBB3lRPHhRDTQkS3F-cdune62wD8C7BvBbg</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Zhang, Luping</creator><creator>Gao, Yu</creator><creator>Zhang, Ru</creator><creator>Sun, Feifei</creator><creator>Cheng, Cheng</creator><creator>Qian, Fuping</creator><creator>Duan, Xuchu</creator><creator>Wei, Guanyun</creator><creator>Sun, Cheng</creator><creator>Pang, Xiuhong</creator><creator>Chen, Penghui</creator><creator>Chai, Renjie</creator><creator>Yang, Tao</creator><creator>Wu, Hao</creator><creator>Liu, Dong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1745-081X</orcidid><orcidid>https://orcid.org/0000-0002-1296-5163</orcidid><orcidid>https://orcid.org/0000-0001-8411-4619</orcidid><orcidid>https://orcid.org/0000-0002-4763-126X</orcidid><orcidid>https://orcid.org/0000-0002-2764-6544</orcidid><orcidid>https://orcid.org/0000-0001-6011-987X</orcidid><orcidid>https://orcid.org/0000-0002-7356-5841</orcidid><orcidid>https://orcid.org/0000-0003-2986-8623</orcidid><orcidid>https://orcid.org/0000-0001-5745-9304</orcidid></search><sort><creationdate>20200810</creationdate><title>THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis</title><author>Zhang, Luping ; Gao, Yu ; Zhang, Ru ; Sun, Feifei ; Cheng, Cheng ; Qian, Fuping ; Duan, Xuchu ; Wei, Guanyun ; Sun, Cheng ; Pang, Xiuhong ; Chen, Penghui ; Chai, Renjie ; Yang, Tao ; Wu, Hao ; Liu, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6923-fe410b52e6ff1366de5cd846b958a961a067f8acbe8846c8a7e822fadc1f8b1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Autosomal dominant inheritance</topic><topic>Benzothiazoles - pharmacology</topic><topic>Biology and Life Sciences</topic><topic>Chromosomes</topic><topic>Cochlea</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>Danio rerio</topic><topic>Deafness - genetics</topic><topic>Deafness - pathology</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Education</topic><topic>Embryos</topic><topic>Exome Sequencing</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Knockout Techniques</topic><topic>Genomes</topic><topic>gRNA</topic><topic>Hair</topic><topic>Hair cells</topic><topic>Hair Cells, Auditory - metabolism</topic><topic>Hair Cells, Auditory - pathology</topic><topic>Hair Cells, Auditory, Inner - metabolism</topic><topic>Hair Cells, Auditory, Inner - pathology</topic><topic>Health aspects</topic><topic>Hearing loss</topic><topic>Heredity</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Life sciences</topic><topic>Linkage analysis</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Microinjection</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Otolaryngology</topic><topic>p53 Protein</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>RNA, Guide, CRISPR-Cas Systems</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Startle response</topic><topic>Stem cells</topic><topic>Supervision</topic><topic>Surgery</topic><topic>Toluene - analogs & derivatives</topic><topic>Toluene - pharmacology</topic><topic>Tumor Suppressor Protein p53 - antagonists & inhibitors</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Zebrafish - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Luping</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Zhang, Ru</creatorcontrib><creatorcontrib>Sun, Feifei</creatorcontrib><creatorcontrib>Cheng, Cheng</creatorcontrib><creatorcontrib>Qian, Fuping</creatorcontrib><creatorcontrib>Duan, Xuchu</creatorcontrib><creatorcontrib>Wei, Guanyun</creatorcontrib><creatorcontrib>Sun, Cheng</creatorcontrib><creatorcontrib>Pang, Xiuhong</creatorcontrib><creatorcontrib>Chen, Penghui</creatorcontrib><creatorcontrib>Chai, Renjie</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Luping</au><au>Gao, Yu</au><au>Zhang, Ru</au><au>Sun, Feifei</au><au>Cheng, Cheng</au><au>Qian, Fuping</au><au>Duan, Xuchu</au><au>Wei, Guanyun</au><au>Sun, Cheng</au><au>Pang, Xiuhong</au><au>Chen, Penghui</au><au>Chai, Renjie</au><au>Yang, Tao</au><au>Wu, Hao</au><au>Liu, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2020-08-10</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008953</spage><pages>e1008953-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Apoptosis of cochlear hair cells is a key step towards age-related hearing loss. Although numerous genes have been implicated in the genetic causes of late-onset, progressive hearing loss, few show direct links to the proapoptotic process. By genome-wide linkage analysis and whole exome sequencing, we identified a heterozygous p.L183V variant in THOC1 as the probable cause of the late-onset, progressive, non-syndromic hearing loss in a large family with autosomal dominant inheritance. Thoc1, a member of the conserved multisubunit THO/TREX ribonucleoprotein complex, is highly expressed in mouse and zebrafish hair cells. The thoc1 knockout (thoc1 mutant) zebrafish generated by gRNA-Cas9 system lacks the C-startle response, indicative of the hearing dysfunction. Both Thoc1 mutant and knockdown zebrafish have greatly reduced hair cell numbers, while the latter can be rescued by embryonic microinjection of human wild-type THOC1 mRNA but to significantly lesser degree by the c.547C>G mutant mRNA. The Thoc1 deficiency resulted in marked apoptosis in zebrafish hair cells. Consistently, transcriptome sequencing of the mutants showed significantly increased gene expression in the p53-associated signaling pathway. Depletion of p53 or applying the p53 inhibitor Pifithrin-α significantly rescued the hair cell loss in the Thoc1 knockdown zebrafish. Our results suggested that THOC1 deficiency lead to late-onset, progressive hearing loss through p53-mediated hair cell apoptosis. This is to our knowledge the first human disease associated with THOC1 mutations and may shed light on the molecular mechanism underlying the age-related hearing loss.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32776944</pmid><doi>10.1371/journal.pgen.1008953</doi><orcidid>https://orcid.org/0000-0003-1745-081X</orcidid><orcidid>https://orcid.org/0000-0002-1296-5163</orcidid><orcidid>https://orcid.org/0000-0001-8411-4619</orcidid><orcidid>https://orcid.org/0000-0002-4763-126X</orcidid><orcidid>https://orcid.org/0000-0002-2764-6544</orcidid><orcidid>https://orcid.org/0000-0001-6011-987X</orcidid><orcidid>https://orcid.org/0000-0002-7356-5841</orcidid><orcidid>https://orcid.org/0000-0003-2986-8623</orcidid><orcidid>https://orcid.org/0000-0001-5745-9304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2020-08, Vol.16 (8), p.e1008953 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2443611473 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Age Animals Apoptosis Apoptosis - genetics Autosomal dominant inheritance Benzothiazoles - pharmacology Biology and Life Sciences Chromosomes Cochlea CRISPR-Associated Protein 9 - genetics Danio rerio Deafness - genetics Deafness - pathology Disease Disease Models, Animal DNA-Binding Proteins - deficiency DNA-Binding Proteins - genetics Education Embryos Exome Sequencing Gene expression Gene Expression Regulation - drug effects Gene Knockout Techniques Genomes gRNA Hair Hair cells Hair Cells, Auditory - metabolism Hair Cells, Auditory - pathology Hair Cells, Auditory, Inner - metabolism Hair Cells, Auditory, Inner - pathology Health aspects Hearing loss Heredity Hospitals Humans Laboratories Life sciences Linkage analysis Medicine Medicine and Health Sciences Mice Microinjection Mutants Mutation Otolaryngology p53 Protein Physiological aspects Research and Analysis Methods RNA, Guide, CRISPR-Cas Systems RNA-Binding Proteins - genetics Signal transduction Signal Transduction - drug effects Startle response Stem cells Supervision Surgery Toluene - analogs & derivatives Toluene - pharmacology Tumor Suppressor Protein p53 - antagonists & inhibitors Tumor Suppressor Protein p53 - genetics Zebrafish - genetics |
title | THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THOC1%20deficiency%20leads%20to%20late-onset%20nonsyndromic%20hearing%20loss%20through%20p53-mediated%20hair%20cell%20apoptosis&rft.jtitle=PLoS%20genetics&rft.au=Zhang,%20Luping&rft.date=2020-08-10&rft.volume=16&rft.issue=8&rft.spage=e1008953&rft.pages=e1008953-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008953&rft_dat=%3Cgale_plos_%3EA634469264%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443611473&rft_id=info:pmid/32776944&rft_galeid=A634469264&rft_doaj_id=oai_doaj_org_article_a3f775b583ca400bb8a1a52d76c5126e&rfr_iscdi=true |